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Structure of small-scale magnetic fields in the kinematic dynamo theory
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A weak fluctuating magnetic field embeddedoira a turbulent conducting medium grows exponentially
while its characteristic scale decays. In the interstellar medium and protogalactic plasmas, the magnetic Prandtl
number is very large, so a broad spectrum of growing magnetic fluctuations is excited atssrhaiscous
scales. The condition for the onset of nonlinear back reaction depends on the structure of the field lines. We
study the statistical correlations that are set up in the field pattern and show that the magnetic-field lines
possess a folding structure, where most of the scale decrease is due to the field variation acréspitself
transverse direction reversglsvhile the scale of the field variation along itself stays approximately constant.
Specifically, we find that, though both the magnetic energy and the mean-square curvature of the field lines
grow exponentially, the field strength and the field-line curvature are anticorrelated, i.e., the curved field is
relatively weak, while the growing field is relatively flat. The detailed analysis of the statistics of the curvature
shows that it possesses a stationary limiting distribution with the bulk located at the values of curvature
comparable to the characteristic wave number of the velocity field and a power tail extending to large values
of curvature where it is eventually cut off by the resistive regularization. The regions of large curvature,
therefore, occupy only a small fraction of the total volume of the system. Our theoretical results are corrobo-
rated by direct numerical simulations. The implication of the folding effect is that the advent of the Lorentz
back reaction occurs when the magnetic energy approaches that of the smallest turbulent eddies. Our results
also directly apply to the problem of statistical geometry of the material lines in a random flow.
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[. INTRODUCTION weak initial seed fields in the galaxider protogalaxies
which have been amplified and brought to their current
It was demonstrated by Batchelf] that a weak mag- strength and configuration by the dynamo action of(fve-

netic field passively advected by a turbulent velocity fieldto)galactic turbulent plasmasee Refs[5,6] and references
would grow, while its characteristic scale would decay. If thetherein. Constructing a definitive and quantitative theory of
magnetic Prandtl numbéthe ratio of fluid viscosityr and  this process remains an open problem. This theory must nec-
magnetic diffusivity , Pr=v/7) is large, there is a broad essarily be a nonlinear one, because the observed fields are
range of subviscous scales available to magnetic fluctuationspt weak. However, developing such a nonlinear theory of
but not to fluid motions. This physical situation is realized inthe magnetic-field evolution will require a thorough under-
such astrophysical environments as the interstellar mediurstanding of its lineatkinematig precursor. In fact, this point
and protogalactic plasmas, where Pr ranges betwe¥rab@  holds with greater force in view of the recent theoretical and
1072, which provides for 7 to 11 decades of subviscous rangenumerical advances which suggest that the saturated spectra
The weak-field(kinematig regime is believed to represent of magnetic fluctuations are largely determined by the turbu-
the initial stage of the formation of the currently observedlent advection processes that drive the kinematic dynamo
magnetic fields of galaxies. These fields, which possess [@—9]. In this work, we study the geometrical structure of the
coherent large-scale component and whose energies are coffuctuating small-scale magnetic fields produced by the kine-
parable to the energies of fluid motions of the interstellamatic stage of the high-Pr dynamo. Our findings will have
medium [2—4], are thought to have originated from very direct bearing on such issues as the condition for the onset of

nonlinear effects, the geometry of the field as it enters the

nonlinear stage of its evolution, and the feasibility of trans-
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the statistical geometry of magnetic field lines will have di- g B/
rect applicability in this area. For the sake of unity of expo- ™~~~ 7777TTTTTTT i Stretching
sition, we will proceed to develop our theory in the language by
of the kinematic-dynamo problem and relegate the drawing shear

of the parallels with the problem of material-line advection
to the end of the discussion section, which concludes this
work (Sec. V).

The mathematical formulation and treatment of the small-
scale kinematic-dynamo problem were initiated by Kazant-
sev[22]. Kulsrud and Andersof23] developed a detailed L
spectral theory of the small-scale magnetic fluctuatigAs.
comprehensive exposition of the modern state of the second-
order statistical theory of the small-scale kinematic dynamo FIG. 1. Stretching of magnetic-field lines by a linear shear flow.
with large Prandtl numbers, as well as the generalization of
Kazantsev’s and Kulsrud and Anderson’s theories to the cagéon ever more rapidly in the plane transverse to the field
of arbitrarily compressible velocity fields, can be found initself [see Fig. 1 and Fig.(@)]. It was argued that no appre-
Ref. [6].) It was established that the characteristic scale ofiable change of the characteristic scales at which the mag-
the advected magnetic field decreases exponentially fast atngtic field variesalong itself could, therefore, be produced.
rate comparable to that of the field growth. The magnetidn other words, the exponential increase of the typical fluc-
spectrum quickly shifts its bulk toward scales extremelytuation wave numbekz(karkﬁ)l’2 is expected to be due
small compared to those of the velocity field. The decreasenostly to the increase df, (rapid transverse direction re-
of the characteristic scale is checked only by the Ohmic reversalg, while k; stays approximately unchanged, ko
sistive dissipation. Such a regime persists as long as the ki>k ~k,. Suchfolding natureof the small-scale fields is
nematic approximation remains valid. consistent with the predominance of volume deformations

It is interesting, and, in fact, necessary for a variety ofwith greatly disparate spatial dimensions, which is a well
applications, to inquire what those small-scale fields “lookknown fact in the the theory of kinematic dynamo and pas-
like”: do they really tangle into a completely chaotic and sive advectio31,32. It is also, of course, directly related to
fine-scaled web? The most important reason for such an irthe extreme flux-cancellation propertine-scale spatial os-
quiry is that it is the structure, not just the strength, of thecillation of field orientation of the dynamo-generated mag-
small-scale magnetic fields that determines the conditions fanetic fields in maps and chaotic flows extensively studied by
the onset of the nonlinear regime. Indeed, we observe thatt and co-workergsee review 34] and references thergin
the Lorentz tension forc8- VB only involves theparallel  and by Cattanef33].
gradient of the magnetic fiel@4]. Heuristically, the nonlin- In this paper, we construct an explicit statistical descrip-
ear Lorentz feedback will start to play an important roletion of the folding effect in the small-scale kinematic-
when the Lorentz tension force becomes comparable to inedynamo theory and study the correlations that are set up
tial terms in the hydrodynamic momentum equation, namelypetween the curvature of the magnetic field lines and the
whenBz~(kV/kH)pu2, whereu is the velocity fieldk, isthe  strength of the magnetic field. Since we are interested in the
smallest-eddy wave number,is the density of the medium, geometrical properties of the field, we neglect the resistive
andk is the characteristic wave number of the magnetic-effects present at extremely small scales and consider the
field variation along itself. For chaotically tangled fields, the diffusion-free induction equation
ratiok, /k can be as small ds, /k,~ Pr 12, wherek, is the
resistive-regularization wave number. The kinematic stage of d_

. —B=B-Vu—BV-u, (1)
the dynamo will then only produce very weak small-scale dt
fields. On the other hand, K is restricted from growing to
be as large a%,, the kinematic dynamo can drive small- where d/d=4;+u-V is the full convective derivative,
scale magnetic fluctuations of energies approaching that dd(t,x) is the passive magnetic field andt,x) is the exter-
the smallest turbulent eddies. Much of the previous work ornally prescribed velocity field. Let us introduce an auxiliary
the small-scale dynamo and such issues as ambipolar damield F=B-VB, which is, of course, the magnetic-tension
ing and viscous relaxation of small-scale magnetic fluctuapart of the Lorentz force. It is readily seen th&(t,x)
tions was based on specific assumptions about the magnitug&olves according to the following equation:
of k; [23,25,28. Understanding the structure of the magnetic
field, and, in particular, the statistics of the field-line curva-

d
—F=F-Vu—-2FV-u+BB:YVu—-BB-VV.-u. (2

ture, is also crucial for the study of the effect of the Bragin- dt
skii tensor viscosityf27] on the small-scale magnetic fields
[28,29. Let us first describe a very simple semiquantitative argument

It was suggested by Cowlg®0] on intuitive grounds and that supports the folding picture. In the incompressible case
later supported by numerical simulatiofis-9] that a large- (V-u=0), we notice that the evolution equati@®) for the
scale advecting field, which is locally just a linear shear flow,Lorentz tension forcé is identical to that for the magnetic
could only stretch the magnetic field and make it flip direc-field with the exception of the terrBB:VVu, which con-
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tains second derivatives of the velocity field. Suppose that awith time. The limiting values of the curvature moments are
initial distribution of the small-scale magnetic fluctuations determined by the resistive regularization at the scales where
has been set up in such a way that its characteristic parallghe magnetic diffusivity becomes importakt,~ Prt%,, .
and perpendicular wave numbers are comparable and both Qur theoretical results on the folding structure of the mag-
are much greater than the characteristic wave number of theetic field, the anticorrelation between the field strength and
velocity field: kj~k, >k, . Then the second derivatives of the field-line curvaturéSec. 1), the growth of the curvature
the velocity field can be neglected and the mean-square tefhoments, and the stationary limiting distribution of the cur-
sion force(F?) must grow in the same way as the magneticyatyre (Sec. I1l) are backed up by the numerical evidence
engrgy(Bz). For the characteristic wave number of the mag-p55ed on the three-dimensiorfaD) incompressible magne-
netic field we then have tohydrodynamic$MHD) simulations by Maron and Cowley
[9]. The relevant numerical results are reported at the end of
2 (F?) o <Bz>< ¢ t 3 each section. The agreement between our theory and direct
”N@ (B% constexp—7st), ® numerical simulations of a realistic MHD environment is
quite remarkable, especially in view of the idealized charac-
wherey, is the growth rate of the magnetic enexdd?) and  ter of our modeling assumptions.
we have used the obvious fact tH@*)=(B?)2. Thus,any In Sec. IV, we summarize our findings and discuss the
initial field arrangement where magnetic-field lines are cha-implications for the nonlinear dynamo theory. The funda-
otically tangled will decay toward a folding state at the rate mental consequence of the folding efféict., of the fact that
comparable to the rate of the magnetic energy grofeth  the parallel scale of the small-scale magnetic fields does not
Fig. 4@)]. o decay is that the nonlinear regime sets in only when the
In order to see how the situation develops Whénbe— magnetic energy becomes comparable to the energy of the
comes comparable tk?, a more complete analysis of the smallest turbulent eddies. We also explain how our results
statistics of the magnetic field and the Lorentz tension isapply to the problem of statistical geometry of material lines
required. In Sec. II, we carry out such an analysis exactly foin isotropic turbulence and relate our conclusions to the pre-
the case of incompressible velocity field, and prove ﬂfat vious work on this subject. Numerical results obtained by
=<F2>/<B4> stabilizes at a value- ki- We then take up the several authors in this context provide further confirmation
question of the evolution of the magnetic curvature, whichof our theory. The fact that the same set of basic features of
was recently raised by Malyshk[i5]. We confirm Malysh- the curvature statistics is found in a number of different ap-
kin's result on the exponential growth of the mean-squareproaches and models, many of them much more realistic
curvature. Most importantly, we find that, while the ratio of than ours, indicates that these statistics may have a largely
averages F2)/(B*) tends to a constant, the averaged ratiouniversal character.
(F?/B*) follows the exponential growth of the mean-square  The paper also includes three appendixes. In Appendix A,
curvature. This discrepancy implies that the magnetic-fieldve explain the technical details of the derivation of the
strength and the curvature of the magnetic-field lines ar¢okker-Planck equations used in the paper. Appendix B is
very strongly anticorrelated, i.e., the magnetic field is weakjevoted to the study of the structure of the small-scale mag-
wherever the curvature is large, and vice versa. The picturgetic fields for the case of advecting flows that possess an
of folded magnetic-field lines is manifestly consistent with arbitrary degree of compressibility. We find that the folding

this property, while that of chaotically tangled ones is not.effect as described above only persists as long as the degree
We argue that the large values of curvature in the bends

X o o exponentially fastalbeit at different ratesinto the subvis-
we present a simple qualitative description of the fOIdEEd_cous scale range and towards the resistive scales. If this de-
magnetic-field-line geometry that makes possible the statis: 9 )

tical correlations we have found cay continues until the parallel and the perpendicular scales
In Sec. Ill, we undertake a more detailed study of thed'® equalized, the folding pattern is replaced by the tangled

one-point distribution of the magnetic-field-line curvature ©N€- However, the tangled state is only set up in a small
and derive equations for its probability density function fraction of the total volume where the density of the medium

(PDP and all of its moments. This is necessary in order tolS high and where most of the magnetic-field growth takes
prove the statement of Sec. Il that the curvature only grow®lace. In the largefand less dengepart of the system, the
exponentially in a small fraction of the total volume of the magnetic field stays relatively weak and flat. This new situ-
system. We discover that, while the moments of the curvaation brought about by compressibility is due to the ability of
ture diverge exponentially in time, its distribution tends to acompressible flows to shrink volumes of the medium with
stationary limiting profile whose bulk is concentrated at thefrozen-in magnetic field lines. The structure of the field is
values of curvature-k, and which has a power tail at large determined by the competition between stretching and con-
values of curvaturéthe exponent is-13/7 in the 3D incom- traction. In Appendix C, the above consideration of the com-
pressible cage We conclude that the fraction of the volume pressibility effects is related to the general theory of passive
where the growth of the curvature takes place tends to zeradvection in compressible flows developed in R&g].
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Il. STATISTICS OF LORENTZ TENSION AND average, whose time derivative is thereby linked to a linear
MAGNETIC-FIELD-LINE CURVATURE combination of other averagéscluding itselj. The latter
averages must in turn be calculated in the same fashion. We

casl,g tc?flsini%(:rﬂg?ésv;/i%|;v"\|/erlisctig/aﬁg:g ?ﬁ;'gsg?ﬂggntc;;ﬁz will see that in many cases of interest, very simple linear
. o : e tions or cl tems of linear tions emerge.
tions for the magnetic field(t,x) and the Lorentz tension equations or closed systems of linear equations emerge

F(t.x) in this case are obtained from the equatiéhsand Let us start by calculating the mean-square Lorentz ten-

(2) by settingV -u=0. As is customary in the problems of sion. We get

passive advectiofi36,12 and kinematic dynam$22]|, we 9(F2)= ye(F2)+ Se(B%) 7)

choose the advecting velocitit,x) to be a Gaussian white- ’

noise-like random field(the Kazantsev-Kraichnan flow o(BY = v,(B* 8

whose statistics are defined by its second-order correlation (B =74(BY. ®

tensor The expressions for the coefficienys, S¢, v4, as well as
(Ut 0UI (L X)) = S(t—t") il (x—X'). @) for others that will arise in what follows, are collected in

Table I. Note that, in accordance with the simple argument
we described in Sec. |, the growth rajg of (F?) is the
same as that of the magnetic enet®?): ye= v,.

Introducing the characteristic parallel wave number of the

As we will only have to deal with one-point statistical quan-
tities, all the relevant information about the velocity correla-
tion properties is contained in the Taylor expansionx8f

around the origif37] magnetic fluctuations according t&=(F2)/(B%), we
readily find
K (y)= koo = 5 k[ y?8 4 2ay'y'] — — S
kﬁ(t)=(k|’f(0)— )e‘(74‘yF)‘+
1 Ya— VF Ya— VF
+ — gy [y28 +2by'y ]+ -, (5
4 SR S ©
YaTYE K2

asy—0. In order to ensure incompressibility, we must set

a=—1/(d+1) andb=—-2/(d+3), whered is the dimen- wherek, is the characteristic wave number of the advecting

sion of space. Our consideration is formallydmlimensions,  flow. The exponential decay d{f was already captured in

so that both the two- and the three-dimensional cases can lbge qualitative argument given in Sec[dee formula(3)].

considered in a unified framework. The existence of a steady limiting solution is due to the
The fieldsB(t,x) and F(t,x) satisfy a closed system of presence of the second derivatives of the velocity field in Eq.

equations, and, in order to study their statistical properties). By taking them into account, we have thus explicitly
we derive the Fokker-Planck equation for the joint PDF of ,rqyed thalk_ﬁ~ K2

B(t,x) andF(t,x) at an arbitrary fixed point. Due to the Let us now undertake a slightly more detailed analysis of

homogeneity of the problem, this one-point PBE;B,F) i the magnetic-field structure. The Lorentz tension can be de-
independent ok. A standard derivation procedure explained composed into two orthogonal components

in Appendix A leads to the following equation féx

. _. VB
P By | B P F:Bz(b.Vber—é )=BZ(K+M), (10
T 2RkIGBTE TR GBI T R
1 . 92 whereb=B/B is the unit vector in the direction of the mag-
+ = '} imn==r==7 B*B'B™B"P (6) o 5 - : -
2 " kimn 5 ET 5] : netic field, andv =b- V. The first term is the magnetic cur-

o _ _ . vature vectorK=b-Vb, the second termM=bVB/B,
The indices following a comma in the subscripts alwaysmeasures the mirror effect and will, for the sake of brevity,
mean spatial derivativesi=a/Jdx*. «'}; and 'y, are the  be henceforth referred to as the mirror force. SiceM,
tensors of second and fourth derivatives, respectively, of theve have(F?/B*)=(K?)+(M?). The mean squares of both
velocity correlatorc (y) taken aty=0. The derivatives with  of these quantities can be expressed in terms of mixed aver-
respect toB' andF' in Eq. (6) act rightwards orall terms  ages ofF and B: (M2)=((F-B)%B®) and(K?)=(F?/B%)
they multiply. The Einstein convention of summing over re- —((F-B)?/B®), which we proceed to calculate with the aid
peated indices is used throughout. Equaiiencontains all  of Eq. (6),
the one-point statistical information about the distribution of

B and F and can, therefore, be employed to calculate any (K2 =y (K2 + Sy, (11
individual or mixed averages of these quantities. This is done
by multiplying Eqg.(6) through by the quantity whose aver- F{M2) ==y (M?) + yy, (K2 + Sy (12

age is sought and integrating both sides with respeBtaad
F. The derivatives are removed via integration by parts andsee Table | for the values of the coefficient¥he exact
an ordinary differential equation is established for the desiredolution of Eq.(11) is
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TABLE |. Coefficients for Sec. Il. The general formulas listed in this table are for the case of arbitrarily
compressible flowgsee Appendix B The results for the incompressible case considered in Sec. Il are
obtained by settingd=0 and{=0.

Incompressible Irrotational
Coefficient Expression d=3 d=2 d=3 d=2
Compressibility parameters
a see expansiofb) —1/4 —-1/3 1 1
b see expansiofb) —-1/3 —2/5 2 2
B d[1+(d+1)a] 0 0 15 8
L d[2+(d+3)b] 0 0 42 24
Growth rategfrom first derivatives ofu)
d-1
/ — 5/2 4/3 10 4
Y2l K2 d+1(d+2+'8)
-1
/ M— 7 4 52 20
Yalko 2d+l(d+4+3,8)
_ 2_
el Ky (d=1d+2)  23d-2) 5/2 43 65 28
d+1 d(d+1)
vl 12 (9—-d)yd—2 2(5-d) 4 4 9 1
d+1 d(d+1)
d-2 2B
/ —|d-1+= 1/2 0 3 0
Ym /K2 a1 d—1+ d)
2d B
/ - = 3/2 4/3 4 4
Ymk /K2 a1 1+ dz)
Source termgfrom second derivatives af)
d-1
S:/K4 [6(d+4)+ é]m 14 36/5 28 12
Sc !k, 6(d—1) 12 6 12 6
d-1
Su/ — 2 6/5 16 6
M Kg (6+§)d+3
) ) S« L S such drastic dependence on the relative order of the averag-
(K1) =| (K5(0) + e er—— (13)  ing and the normalization with respect to the magnetic-field

so the magnetic curvature grows exponentigdlyen if it is
initially zero). It is instructive to express its growth rate in
terms of the growth rate of the magnetic enef@?). In
three dimensions, this giveg, =
with the result Malyshkirf35] obtained by a direct calcula-

strength. This dependence clearly indicates thette exists a

(16/5)y,/2, which agrees

very strong anticorrelation between the strength of the mag-
netic field and the curvature of the magnetic-field lines.
Namely, while both the mean-square curvature and all mo-
ments ofB grow exponentially, the magnetic fields are con-
figured in such a way that the magnetic field is very weak

tion of (K?) in the spirit of the Kulsrud-Anderson theory Wherever its curvature is large, and vice versa. No such ar-

[23]. We also see that the mean-square mirror fdi€g.

rangement would be possible if the field were chaotically

(12)] is not an independently interesting quantity: after atangled everywhere. Indeed, a tangled state of this sort would
transient initial time, it is reduced to “mirror” the evolution imply that the absolute values of the curvature were every-
where comparably large and growing. But then, in order to

compensate for the growth of the curvature, the growtBof

of the mean-square curvature:

2 __YwK
(MEM® Ykt Ym

(K2)(1),

t—o0,

(14

would have to be partially or fully suppressed compared to
that mandated by Ed8).

On the other hand, it is easily envisioned how the strong
Thus, we have established that, while the ratio of the averanticorrelation betweeB andK can be realized in the fold-
ages(F2)/(B* tends to a constant valuek?, the averaged ing picture. While the curvature is quite small and magnetic-
ratio (F2/B*)~(K?)~e<! grows exponentially. Since both field grows in most of the volume, which is occupied by the
of these quantities have the dimension and the intuitivdolds, the situation is reversed in the small part of the volume
meaning of some characteristic parallel wave numbers, theshere magnetic field lines bend and reverse direction: the
question inevitably arises as to the physical interpretation oturvature there is very large and magnetic field weak. Figure
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B=0 Reynolds numbers are quite small, so the advecting fluid
flows are essentially determined by the balance of the forcing
and the viscous dissipation. However, this is not really a
handicap, as the purpose of the numerical results presented
here is to illustrate the kinematic-dynamo properties at sub-
viscous scales. More discussion of this issue can be found in
Refs.[7,8].

In Fig. 3, we give the greyscale plots of the magnetic-field
strength and the absolute value of the magnetic curvature
corresponding to a typical instantaneous magnetic-field con-
figuration observed in a simulated MHD evironment during
the kinematic stage of the small-scale dynamo. The folding
pattern strikingly similar to the one described above is
clearly in evidencedcf. Fig. 2). The anticorrelation between
the field strength and the field-line curvature, as well as the
intermittent nature of the distribution of botbf. Sec. 1) are

also manifest. Figure (4 shows how the ratiokﬁ

FIG. 2. The geometry of the folding field lines in the vicinity of — —, ' 4 . . 2 s
the bend. The dashed lines correspond to the surfaces on which trie<F )[(B") adjusts to a stationary valuek from an initial

magnetic field vanishes. The shaded area is the cross section of tRtAte where the field is chaotically tangled at subviscous
volume that can be used for the flux-conservation estimatcales. We show results of two simulations with such an
Buend/Brog~1. /11, - All the flux is through the surfaces whose cross (@rtificial) initial field and_different values ok, . In both
sections are depicted by the bold lines. cases, exponential decaykff(t) toward stationary values

) ) ) ~ afew timeskf is observed, which corroborates Ef). Fig-
2 illustrates the typical geometry of the folding magnetic- .o Ab) portrays the time evolution of the ratig=2)/(B%)
field lines. This picture is in 2D, but can also be interpreted, g of the mean-square curvatyi¢?) in a simulation that
as a cross section of a 3D geometry of a sheetlike configusiars with the magnetic field concentrated at the velocity
ration. Flux conservation JB-dS=0) implies ByendBrow  scales. The ratigF2)/(B*) again stabilizes at a value a
~I, /1y, wherel, is the characteristic scale of magnetic- ¢, timeskﬁ as predicted by our solutiof®). The exponen-

field variationacrossitself in the folding region andj, is the tial growth of the mean square curvatui€?) proceeds in
characteristic size of the bend. The velocity shear that Prozccordance with our solutiof.3) until it is checked by the
duces(or “sharpens’) the bend acts in such a way tHatis

e - resistive regularization at a stationary val&?)~k?.

ieé:reased whild, is amplified, soly>1,, whenceBrens \ypile our theory was constructed for the diffusion-free re-

Itfo:%.ust be recognized, however, that the presence of a ime a_nd, therefore, did not include this effect, the resistive
anticorrelation between t,he magnétic—field strength and th aturation of the curvature Is _naturally_ an expected outcome

L . o ?see Sec. Il for more discussion of this issue

magnetic-field-line curvature does not in itself prove that the
volume where the growth of the curvature occurs constitutes
only a small fraction of the total volume of the system. In- IIl. DISTRIBUTION OF MAGNETIC-FIELD-LINE
deed, examples of magnetic fields can be constructed that cyRVATURE AND MAGNETIC-FIELD STRENGTH
possess such an anticorrelation and where, at the same time,
the mean-square curvature grows in any arbitrary fraction of In the previous section, we indicated the need for a study
the total volume that can be specified beforehand. Furthe®f the curvature statistics that would go beyond the evolution
study of the curvature statistics, is, therefore required t®f the mean square. In this section, we fuffill this program
settle this issue. This will be carried out in Sec. lIl, where theand delve deeper into the detailed properties of the distribu-
smallness of the volume where the curvature grows is contion of the magnetic field and its curvature.
firmed. The Fokker-Planck equation for the one-point PDF of the

Finally, let us reiterate that the presence of the foldingmagnetic-field-line curvatur =b- Vb is most conveniently
structure has found repeated confirmation by numerical eviderived on the basis of the folowing coupled evolution equa-
dence. Most recently, folding was extensively studied in 2Dyjons forK and the magnetic-field directidnt
and 3D numerical simulations of the small-scale dynamo ef-
fect in a viscosity-dominated MHD model of Kinnest al. g
[7], and in 3D forced-MHD simulations of Maron and Cow- NN ~r
ley [9]. Here we present the numerical results that are based gk=K-(Vu-(= bb) —bKb:Vu—2Kbb:Vu
on the latter work and directly relate to the theory developed . o
in this section. All numerical results presented in this paper +bb:(VVu)-(I-bb), (15
derive from a 128 spectral forced-MHD code written by J.
Maron and described in detail in Ref88,9]. The external
forcing is on the system-size scale afidorrelated in time. EB=6-(VU)~(1— bb), (16)
In the simulations quoted in this paper, the hydrodynamic dt
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FIG. 3. Instanteneous magnetic-field configuration in the kinematic regmmmerical results These are grayscale plots of 2D cross
sections of the 3D snapshots(@j the magnetic-field strength artk) the absolute value of the field-line curvature. These plots are from the
same simulation as Fig(H). The field strength and the curvature snapshplists (a) and(b)] are taken at the same moménrt8.2 and at
the same cross section. Darker regions correspond to larger values of the fields (&), pBt=0.003,(B?)1?=0.004,(B*)¥*=0.006, and
the maximum value of B throughout the system=i6.025. The regions that are pitch black in the plot encompass fields stronger than 0.01.

All of these values correspond to magnetic-field energies well below the nonlinear-saturation threshold. The specific units of the field
strength are, of course, of no consequence here. IfiplotkK ) =50, (K?)*2=70, (K*¥*=110, and the maximum value Bfis =520. The
pitch-black regions of the plot correspond to curvatures larger than 400. The curvature has units of inverse length, based on the box size 1.
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(a) Decay of (F?)/(B*) (logyo plot) (b) (K?) and (F?)/(B*) (log;o plot)

FIG. 4. Anticorrelation between the magnetic-field strength and the field-line curvature and growth of the mean-square curvature
(numerical results (a) Time evolution of(F2)/(B*) in two simulations where the initial magnetic field is uniformly tangled at subviscous
scales. The hollow dots correspond to the simulation with B30, k,~25; the filled dots correspond to the simulation with=R2500,
k,~5. (b) Time evolution of(F2)/(B*) (hollow dot9 and(K?) (filled dotg in a simulation with the initially flat magnetic field varying
transversely at the velocity scaldg €0, k, ~k,). In this simulation, P+2500,k,~5, k,~250. The ratio{F?)/(B*) again stabilizes at a
value ~ a few timeskﬁ. In both plots, the quantities plotted have units of inverse length. These are based on the box size 1. Time is
measured in units of the smallest-eddy turnover tiff®x u|?) =2 (in units based on box size 1 and forcing power 1, this quantity is
~0.22).
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where 1 is the unit dyadic and colons denote double dotx,4, anda are coefficients of the small-scale expansignof

products executed according Kﬁ:Vu=K-(6-Vu), etc. the velocity correlator. Note that the distribution of the cur-
Both of the above equations are direct corollaries of the invature is independent of the second compressibility param-
duction equation(1). It is easy to see that these equationseterb. The normalization rule foP(t;K) follows from the

respect the conservation lafg =1 andb-K =0. Note that, normalization of the original PDP(t;K,b) and from the

in this section, we work with arbitrarily compressible veloc- factorization (18):  (1/2)S4Sy-_1/5dKK4 2Py (t;K) =1,

ity fields, sou is not required to be divergence-free. It will be where Sy=27%%T'(d/2) is the area of a unit sphere ih

seen, however, that none of the essential features of the cuimensions. Absorbing the geometrical prefactor into

vature statistics are affected by the compressibility. Pk(t;K), we conclude that the true PO the sense that it
The averaging procedure that leads to the Fokker-Plancihduces a measure on the volume of the system and inte-

equation for the joint PDFP(t;K,b) does not involve any grates to unityis K°~?Py(t;K). Note that, since the curva-
nonstandard steps and is fully analogous to that used to déure vector must always remain perpendicular to the direc-

rive the Fokker-Planck equatioi®) (see Appendix A The tion of the magnetic field, the curvature distribution is
result is effectively restricted tal— 1 dimensions.

It is now straightforward to establish the set of evolution

d b'bKp equations for the even moments of the curvature

b’ gKT T ab"

1 g J
aP=- EK[{d( — 8 — bR+ Kk

] ] ] (K2 = Mn—d+g<6—n—l)ﬁ N K2
—ZaKrKrbkb‘—mbrKkbi—mbrka‘) ‘ d+1 did+1 2
; 5 ; ; +6(d+2n—3)n, (K2 n=1. (20
X| =5b'+ —K'= =<b%h'b) — 2—K%b'b’
' oK db® IK® For n=1, Eq. (20) reproduces the results for the mean-
9 9 . square curvature that were obtained in Sec. Il and Appendix
— —<bK'bl - —Sbsb'Kl) = B [see Eq.(11) and Table ]. The higher moments of the
K K curvature are coupled to the lower ones in a recursive fash-
1 . P 9 _ ion, but also have their own growth rates that increase qua-
+ Exf{(,mn<(9—K,—bkbm— mbrb"bmb') dratically with n. This latter kind of intermittency is very

similar to that encountered in earlier studies of the statistics
J J , of the magnetic-field strengtl81,32. For the sake of com-
—b'b"— —bsb'b”bl) P.

X
aK! IK®

(17 parison, let us list here the Fokker-Planck equation that de-
termines the PDFBY 'Pg(t;B) of the magnetic-field

A major simplification of this equation becomes possible ifStrgngth B and dttulifvolution equation for its moments

one recalls that the joint distributioB(t;K,b) is subject to (B™)=SufodBB "Ps(t;B),

two constraints]b|=1 andb-K=0. Also taking into ac-

Al i 1 d-1
count the spatial isotropy of the problem, we conclude that _= 2pn /
the following factorization holds: HPe=5 K2 gl (1T BB PRt (d+1)(1+24)BPs

P(t;K,b)=8(|B2— 1) 8(h-K)Px(t:K).  (18) +d(d+1)5Psl, (22)
The functionP(t;K) is then found to satisfy the following ) -1
reduced Fokker-Planck equation: (B = ggl2n+d+(2n— 1)BInky(B™). (22

K2Py The primes in Eq(21) denote derivatives with respect B
We note that Eq(8) is a particular case of E¢22). Direct
2(7d-2) derivation of the above equations by averaging the induction
11d*~6d+1+ Tﬁ) KPg equation(1) is quite standard. Details can be found in Ref.
[39]. Equation(21) can also be obtained by integrating out
the F' dependence in Eq4B2) and using the spatial isotropy
PK} of the magnetic-field distribution. Equatid@2) is a direct
consequence of E¢21).

We now turn to the main objective of this section, namely,
estimating the fraction of the total volume of the system
where the curvature growth occurs. In Efj9), denote byD,
where primes denote partial derivatives with respeét,tthe =, andI" the coefficients in front oK?Py, KPy, andPy,
compressibility parameterB=d[1+(d+1)a] is non- respectively. Now rescale time and curvature according to
negative and vanishes in the incompressible case,kand Dt=t and K/K, =K, where K, =(3k,/D)*?~k, (recall

5d—1+ 6
aﬁ

HPe= 3T 2

+

4
3d-1+-3

+(d—1)(2d—1) 5

: (19

n d_2 ’
kT P

+3K4
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that k, is the characteristic wave number of the advecting

velocity field. We can now rewrite Eq19) in the following
nondimensionalized form:

HPx=(1+K?)Pg+

d—2
oK+ T) P|'(+(d—1)(0'—d)PK,
(23

where we have used the fact tHat(d—1)(2 —Dd) and
denoted

11d%>—6d+1+2(7d—2)B/d
5d—1+64/d

(24

g=

3
D

PHYSICAL REVIEW B5 016305
Gu(t—ty:K,Ko)

_exp(d—1)(o—d)(t—to)]

Ko\ 47T(t_to)
p( [IN(K/Kg)+ (o—1)(t—tg)]?
exp — At—ty) .

(29

Thus, the curvature distribution develops a lognormal tail.
This clearly accounts for the intermittency we have detected
in the evolution of the curvature momeritgq. (20)]. Multi-
plying the Green’s functiori29) by K9~2, it is not hard to

Besides the dimension of space, the only essential paramet%‘?e that the peak of the excitation propagates according to

of the curvature distribution is-, which changes witld and

the degree of compressibility. The correct boundary condi

tions for Eq.(23) follow from the normalizability require-
ment [ 5 dKK97 2P (t;K) <,

[KY 2Py (t;K)]k=0=0,
[KIPL(t;K)+ (o—d)KI P (t;K) Ik .=0. (25

Let us study the evolution of the curvature statistics from a

initial setting where the curvature is zero everywhere

K972P (t=0,K) = 8(K). While such as-like initial distribu-
tion is, of course, highly artificial, mathematically it is not an
anomalous case since, as we have dé&&n (20)], the mo-

ments of the curvature would grow even from such an initial
state. Two distinct asymptotic regimes can be identified in

the evolution of the curvature distribution.
Small-curvature regimeFor small values of curvature

K<1 (i.e., for the dimensional curvature much smaller then

K, ~k,), Equation(23) reduces to what mathematically is a
heat equation id— 1 dimensions with radial symmetry

[?IPK: Plré“l‘

K Py .

(26)

The solution is a heat profile spreading out from the origin

Y
eK/4t

Pk(t;K)= consm.

(27)

Multiplying the solution(27) by K972, we find the peak of
the PDF aK ;5= V2(d—2)t, i.e., it remains aK=0 in 2D
and shifts towards largdf in 3D. In either case, the excita-
tion eventually spreads over towards lar¢er 1, where the
small-curvature asymptotic regime breaks down.

Large-curvature regimeAt large values of curvature
K>1, the asymptotic form of Eq23) is

0 Px=K?Py+oKP+(d—1)(c—d)Px. (28

In logarithmic variables, this is a 1D diffusion equation with
the drift velocity o—1 and with an overall growth rate
(d—=1)(o—d). The corresponding Green’s function is

r_'and at som&K~K, in 3D. Thus, in most of the volume of

‘the system, the values of the curvature should not greatly

Kpea= Koex( (2d—3—0)(t—to)]. Substituting the value of

[formula (24)], we see that @— 3—o<0 in both two and

three dimensions, so the peak, in fact, propaghtekwards
towards smaller values of curvature.

The conclusion from this simple asymptotic analysis is
that, after an initial transient time, the curvature PDF should
assume the form where its bulk is concentrated at the values
of (dimensionagl curvature smaller or comparable 6,
~k, and a lognormally decaying tail is formed li&K, .

The global maximum of the PDF is locatedkat=0 in 2D

exceedK, . The growth of the moments of the curvature is,
on the other hand, mostly due to the lognormal tail of the
distribution. Indeed, multiplying the solutiori27) and (29)

y K972%2" we see that the relative importance of the
small-curvature region decreases, while that of the lognormal
tail increases. The peak of the functieri—2*2"P,(K) for
n=1 always propagates in tiierward direction.

Of course, once the solution of ER3) has cleared the
region of validity of the small-curvature asymptotic regime,
a complicated process of probability redistribution is set up.
As time passes, the lognormal tail gains more weight, while
the heat profile at smaK spreads out. The precise nature of
the evolution of the PDF is decided by the interaction be-
tween the small-curvatur@adial heat and large-curvature
(lognorma) regimes in the crossover regidd~K, . This
interaction can affect thentire PDF. We can gain more in-
sight into what happens by observing that Eg3) has a
stationary solution. Indeed, let us write E&3) in the fol-
lowing explicitly conservative form:

1%

=iz a—KKd*Z[(1+ K2)Py+(o—d)KP].

Pk
(30

Setting the left-hand side to zero, integrating twice, and mak-
ing use of the boundary conditiori&5) to eliminate one of
the constants of integration, we find the following stationary
limiting PDF:

Kd*Z

=const————— .
(1

d—2p(st)
KT 2Pi(K) JrKz)(a——d)/z

(31)
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TABLE Il. The coefficients of Eq(19) and Eq.(23).

Velocity field Dimension a B D/«, /Ky Ik, o o—2(d—-1)

Incompressible d=3 —-1/4 0 714 41/4 10 41/7 13/7
d=2 -1/3 0 3/2 11/2 5/2 11/3 5/3

Irrotational d=3 1 15 11/2 34 35 68/11 24/11
d=2 1 8 11/2 43/2 21/2 43/11 21/11

This PDF satisfies the boundary conditidi@$), is properly  proximation may well break down before the resistive scales
normalizable, and has a power tailk [°2(@=D] The val-  become importani5].

ues of the exponent—2(d—1) for the incompressible and As regards the distribution of the curvature over the vol-
irrotational cases in two and three dimensions, along with theime of the system, the fraction of the volume where the
values of other relevant parameters, are collected in Table Iturvature exceeds any given valig is easily seen to be
The curvature distribution can be seen to conveigethe V(K>K0)=f°,20dKKd‘2PK(K). The existence of a station-

mean-square sens® the stationary profil€31) if we rep- 4y distribution implies that this quantity tends to a constant
resent the time-dependent solutions of E(O) in  that depends on the value chosen. Since the bulk of the dis-
the form Py(t;K)=C(t;K)P{(K) and notice that the tribution remains at the values of théimensional curvature
prefactor C(t;K) tends to a constant, viz.d(C?)  comparable toK,~k,, the value of V(K>Ky) for K
=—2((1+K?)(9C/3K)?), where the averages are with re- >k will be small. For example, we can use the stationary
spect to the stationary distributid81). distribution (31) to estimate that, in the 3D incompressible
Figure 5 shows the results of numerical solution of Eq.case, the fraction of the volume where the curvature is more
(30) in two and three dimensions for the case of incompressihan ten times larger thalk, does not exceed 14%, while
ible Ve|OCity field. The results for the case of irrotational the fraction Of the V0|ume Where the curvature is |arger than
velocity field are very similar in fornfwith slightly different 100K, is no more than 2%. It is, of course, quite clear that
power laws at largé: see Table )i. Collapse of the curva- tne fraction of the volume where exponential (or any other
ture PDF onto the stationary profil@1) is very quick and  kind of) growth of the curvature occurs tends to zero with
proceeds in essentially the same fashion in both incompresgme.
|b|e and iI’I‘Otational Cas%ee diSCUSSiOI’] at the end Of thIS Now |et us Compare the properties Of the curvature distri_
section. bution we have just described with the properties of the PDF
An important feature of the stationary PD¥l) is thatall  of the magnetic-field strength determined by E@1).
the momentgK?*") diverge. In the language of physical re- Clearly, the Green’s functiofSg(t—to;B,Bq) for this equa-
a.“ty, this means that the I|m|t|ng values of the CUrVatUretion is everywhere |ognorma| and ana|ogous in form to the

moments are essentially determined by the resistive regulafynction G, (t—t,;K,K,). With time rescaled according to
ization, which must cut off the power tail of the PDB1) at ¢, (d—1)/2(d+1)=t, we have

the scale where magnetic diffusivity becomes importapt:

~Pr%k, . This is, of course, hardly surprising because cur- G (t—t,:B,B,)

vature is just a measure of the inverse scale of the magnetic o

fluctuations and cannot exceed the resistive scale. In view of exdd(d+1)B8(t—tg)]
these findings, the growth rates for the curvature moments = BoyAn(l —
that have been obtained in this and the preceding sections, ova4m(1+B)(t—1to)
should be interpreted as describing the evolution of the mo- {In(B/Bg) +[d+(2d+1)B](t—to)}?
ments while the lognormal tail of the evolving distribution xXexp — A1+ B)(t—to) .
spreads and thickens. The power tail of the stationary limit- 0
ing distribution (31) forms the envelope inside which this (32
process takes place. In the diffusion-free regime, the station-

ary distribution itself is attained 4t with the moments Multiplying Gg(t—to;B,B,) by B4, we find that the peak
diverging exponentially in time. We should like to observe of the excitation is aBc,= Boexf (d—2—3B)(t—tg)]. In the
here that a PDF such as we have obtained, with a power tailcompressible case, the peak is stationary in 2D and propa-
and divergent moments, is indicative of a fractal nature ofgatesforward in 3D. For all compressible flows in 2D and
the distribution. It must be clear that the presence and th#éhose witha>—2/9 in 3D, the direction of propagation is
particular form of the small-scale regularization may affectreversed. On the other hand, the peak of the function
the global shape of the curvature distribution. Since we work8®~1*2"Pg(t;B) for n=1 always propagates in the forward

in the diffusion-free limit, our theoretical results only apply direction, which accounts for the growth of the moments of
to the period in the evolution of the magnetic fluctuationsB [Eq. (22)].

before the small-scale cut off is reached. In astrophysical Thus, we see that the weakening of the anticorrelation
plasmas with very large Pr, this corresponds to an apprésetween field strength and curvature in the compressible
ciable length of time. In fact, current estimates pertaining tolows (Appendix B is due not to any essential change in the
the (protojgalactic dynamo suggest that the kinematic ap-properties of the curvature distribution, which is quite insen-
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FIG. 5. The results of a numerical solution of Eg3) in two and three dimensions for the case of incompressible velocity field. The
numerical solution was initialized with the Gaussian heat pra@® corresponding td=0.2. Time is measured in the units Bf 2,
curvature in the units ok, . We plot the evolving PDIK®"2P(t;K) (normalized to 1) at times=0.2,0.5,1,2,3,4,5,6,7,8,9. The PDF that
corresponds to the earliest time is the one with the highest peak and the steepest decaykatAadgeer times, the peak of the PDF
descends, while the tail becomes thicklErg normal with increasing variance and eventually poweylikene log/log plots(b) and (d)
illustrate how the power tail is formed. For the sake of reference, we have also plotted the slopes correspordiffy 16/~
(see Table I\

sitive to the variation of the degree of compressibility of theln Fig. 6, we present the evolution of the curvature distribu-
flow, but rather to the fact that the magnetic-field strengthtion observed through a sequence of times that correspond to
itself now tends to only grow in a decreasing fraction of thethe kinematic and diffusion-free stage of these simulations
total volume of the system. In such a case, both the curvatur@t later times, the PDF is affected by the resistive regular-
and the magnetic field remain relatively weak in most of theization and then by the nonlinear effect§he collapse of the
volume. An essential difference in their statistics is that, un-curvature PDF onto a stationary profile is manifest. The log/
like the curvature, the magnetic field does not possess a stig plot[Fig. 6(b)] confirms the emergence of the power tail
tionary limiting distribution. Indeed, due to the scale- ~K %" These results agree very well with our theoretical
invariant nature of the Fokker-Planck equati@1), such a  predictions presented in this section.
distribution would have to be a global power law and hence
could not be normalizable. . o IV. SUMMARY AND DISCUSSION

In conclusion, we check the main results obtained in this
section against the numerical evidence supplied by the 3D Let us now summarize the main physical points we have
incompressible MHD simulations of Maron and Cow/[&). pursued in this work and discuss the implications for the
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FIG. 6. Curvature PDF from 3D incompressible MHD simulations. This is the same simulation as was used iib)Figr=42500,
k,~5, k,~250, flat initial field. We plot the PDF#ZKPK(t;K) (normalized to 1) at times=0.9,1.8,2.7,3.6,4.5,5.5,6.4,7.3. The curvature
has units of inverse length, based on box size 1. The time is measured in the WhWs<af|2) =1 (the smallest-eddy turnover timerhe
PDF that corresponds to the earliest time is the one with the highest peak and the steepest decaKafldeger times, the peak becomes
lower, the decay gentle(a) is the linear plot(b) is the log/log plot. The dashed line represents the slope corresponditgtd.

nonlinear dynamo theory. In this section, we will only dis- where the magnetic excitaion has not reached the resistive
cuss the case of incompressible flows as the most relevant #cale, the growth of the curvature moments is unbounded
the astrophysical context we have in mind. The effects ofind the curvature distribution tends to a stationary limiting
compressibility have been given ample attention on bottpowerlike profile with divergent moments. If the resistive cut
quantitative and qualitative level in Appendixes B and C andoff is felt while the magnetic field is still weak enough to
in Sec. Ill. satisfy the kinematic assumption, the curvature moments

In the astrophysical environments that have large magsaturate at the resistive scale and the precise global shape of
netic Prandtl numbers and, therefore, possess a wide rangettfe curvature distribution may be modified. However, the
(subviscousscales available to the magnetic, but not hydro-main features of the folding structure described abgifie
dynamic, fluctuations, the small-scale kinematic dynamo isinticorrelation between the curvature and the field strength,
driven by the velocity field that locally looks like a linear the smallness of the volume where the field is beuntvive
shear. The volume deformations produced by this field leadbecause they result from the large-scale geometric properties
to exponentially fast stretching and folding of the magnetic-of the advection rather than from the particular form of the
field lines into a structure characterized by very rapid transsmall-scale regularization.
verse variation of the field, which flips its direction at scales Let us remark that the reason for some of the statistical
ultimately bounded from below only by the resistive length. quantities considered in this paper achieving steady-state val-
However, the field lines remain largely unbent up to the scaleies even within the confines of the diffusion-free kinematic
of the advecting flow. approximation (F2)/(B*—const, stationary curvature

Both numerically and analytically, we have establishedPDF) is that the second derivatives of the advecting velocity
that the curvature of the magnetic-field lines and the fieldfield appear in the corresponding dynamic evolution equa-
strength are anticorrelated, i.e., the growth of the figl-  tions[see Eq(2) and Eq.(15)]. While passive fields such as
namg mostly occurs in the regions of flat field while the B only feel the linear component of the ambient velocity
sharply bent fields remain relatively weak. This situation isfield and, therefore, have scale-independent nonstationary
quickly restored even if the field is artificially scrambled into distributions, the statistics of their gradients involve an addi-
a chaotically tangled state. Moreover, in the three-tional scale-dependent parametet,/ K2~k§. In other
dimensional incompressible flows, it is the flat growing fieldswords, whereas the magnetic field only knows that it is ad-
that occupy most of the volume of the system. Accordingly,vected by a large-scale flow, the statistics of the magnetic-
the field-line curvature remains comparable to the inversdield gradients specifically depend on the actual scale size of
velocity scale in most of the volume, though its distribution this flow and would not be fully captured in a theory where
is intermittent and all of its moments grow exponentially onthe velocity field were assumed to be linear. Physically, the
account of the small regions of strongly beiiut wealk  first derivatives of the velocity cause the stretching of the
fields. field lines (random sheay while the second derivatives are

In the diffusion-free approximation, i.e., in the regime responsible for the bending.
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The theoretical results presented in this paper have bedtows [16—19 and of the curvature of material lines in both
derived for the Kazantsev-Kraichnan model velocity fieldturbulent[18,14,13 and deterministic but chaotj@0] flows.
(4), which is Gaussian and correlated in time. In view of Our results on the statistics of magnetic-field-line curvature
the highly artificial nature of this field, the question naturally are subject to direct comparison with these earlier studies.
arises as to the validity of such results in application tolndeed, our Eq(15) for the vector curvatur& =b-Vb of
physical, or even to numerical, realities. Indeed, the velocitythe magnetic field line leads to the following equation for
field that arises in the Kolmogorov turbulence is neitherK=|K|:
Gaussian no# correlated in time: its intermittent character is q
well known and its correlation time is naturally estimated to on- oo AR A
be of the same order as its eddy-turnover timZ. However, the dt K=~(2bb:Vu=nn:VWwK-+bb:(VVu)-n, (339
Kazantsev-Kraichnan model, while by no means a controlled R
approximation 39|, appears to correctly capture most of the wheren=K/K is the unit normal to the field line. E¢33) is
physics of the passive advection on at least a semiquantitédhe same as the equation derived by Drummond andddu
tive level and has survived a number of reality tests, numerif18] for the curvature of the material line elemertis the
cal[7-9] and, in the case of scalar turbulence, also experitisual geometric definitionand is very similarithough not
mental (see, e.g., the reviey40] and references thergin identica) to Pope’s[16] equation for the extrinsic principal
Indeed, as was reported in the preceding sections, our resultsrvature of the material surface elements. Formal similarity
are in a very good agreement with numerical simulationspetween the curvature equations for material lines and sur-
where the velocity field derives from the forced Navier-faces led Drummond and fhieh[18] to conjecture that, in
Stokes equation and has a realistic correlation time. isotropic turbulence, the general features of the curvature

The primary motivation of this study of the structure of statistics for these objects would also be ali4&]. All of the
the magnetic field was its crucial importance for the underextant numerical evidence supports this conjecture at least on
standing of how the nonlinear effects set in. We reserve théhe qualitative leve[17,18,14,15,2D The curvature statistics
detailed qualitative and quantitative discussion of this issuelso appear to be largely insensitive to the type of flows
for an upcoming publicatiof8]. Here we restrict ourselves considered. Thus, numerical simulations involving 3D forced
to mentioning the most immediate consequence that the fold<17] and 2D decayin§14] Navier-Stokes turbulence, Kraich-
ing nature of the small-scale field in the kinematic regimenan’s[42] random flow mode[18,15], 2D and 3D determin-
has for the onset of the nonlinearity. The Lorentz-feedbackstic but chaotic flowg20], and, finally, our own 3D forced-
term in the MHD momentum equation is proportional to theMHD simulations and theoretical results based on the
Lorentz tension forcé==B- VB [24]. This quantity is qua- Kazantsev-Kraichan velocity fiel@both compressible and
dratic in the magnetic-field strength and involves plagallel  incompressiblg consistently reveal the same set of proper-
gradient of the field. The overall effect of the correlationsties of the curvature distribution. The unbounded exponential
that produce the folding structure is to fix the effective valuegrowth of the mean-square curvature was first observed in
of this parallel gradient at approximately the inverse velocitythe numerical studies of Pope and coworKdrg], who also
scalek, . Thus,the condition for the nonlinearity to become found that, unlike the moments of the curvature itself, the
important is the growth of the magnetic energy to valuesnmoments of its logarithm tended to time-independent
comparable to the energy of the smallest turbulent eddiesasymptotic values. The emergence of a stationary curvature
rather than to much smaller values at which the Lorentz tenPDF with a power tail was reported. Drummofitb] con-
sion of a chaotically tangled field would start balancing thefirmed these results in his numerical model and also offered
inertial terms in the momentum equation. Any prospects fola qualitative theoretical argument that related the existence
producing magnetic fluctuations at larger scales depend oof the power tail of the curvature PDF to the competition
whether there exists a nonlinear mechanism for unwindindpetween the stretching action of the first spatial derivatives
the folded structure that the nonlinear regime inherits fromof the velocity field and the bending effect of its second
the kinematic one. For further discussion of this subject thelerivatives. Ishihara and Kanefl:d] attempted to determine
reader is referred to Ref7-9|. the power law(in 2D) by looking for a critical indexp.. such

Finally, as was promised in Sec. |, let us discuss the relathat the curvature moments of orders higher tiparwould
tion of our results to the fundamental turbulence problem ofdiverge. For a model velocity field essentially equivalent to
material-line advection. In an ideally conducting fluid, the the Kazantsev-Kraichnan flow, they dedugeg-2/3, which
behavior of the magnetic-field lines and that of the materialas consistent with their numerical results for a realigie-
lines are, of course, identical, so the diffusion-freecaying 2D turbulence. All of the above is in perfect agree-
kinematic-dynamo problem can be recast as a problem ahent with the results of Sec. Ilin particular, Ishihara and
stretching of the material lines by the ambient flow. TheKaneda’'s[14] critical index exactly corresponds to our
pioneering work on this subject is due to Batchglt®], who  —5/3 power tail ind=2). Drummond and Muoch[18] also
realized that, on the average, turbulent motions lead to expgnumerically measured the correlation between curvature
nential elongation of material line and surface elements. Hisnd stretching and found it negative, as did we in our theory
results were extended and, in part, made rigorous by a nunand simulationgSec. I). Such an anticorrelation was also
ber of authorg11-15. Starting with the work of PopEL6], noticed by Boozer and coworkef21], who, in their theory
much attention was focused on the statistics of the extrinsiof finite-time Lyapunov exponents for chaotic flows, found
principal curvature of material surface elements in turbulenthat the local Lyapunov exponent of the flow was strongly

016305-13



SCHEKOCHIHIN, COWLEY, MARON, AND MALYSHKIN PHYSICAL REVIEW E65 016305

suppressed in the regions of high curvature. Finally, results _ . J )\ .~ 32 o
very similar to those surveyed above were obtained by diZ+U'Zy=| ui— —+N\i—— U',kZ—”\iWU',ka-
Muzzio and coworkerg20] for a number of 2D and 3D Fk k Ho?fm (A4)

deterministic chaotic flows. Thus, the exact theory of the

curvature statistics that we have been able to develop in thg order to establish an evolution equation for tageragegl
framework of the Kazantsev-Kraichnan model incorporategharacteristic functioZ(t; «,\), we must average the three

all of the essential features thus far observed numerically, a3ixeq products oF and the velocity field that appear in the
well as surmised in less direct theoretical ways. The closey,, e equation. The average that arises from the convective

agreement between our theory and an array of nUMericayn yanishes due to the incompressibility of the velocity

results obtained for more realistic flows provides an addi-

. . k~ _
tional validation of our approach and, more importantly, sug-ﬂeld and the homogeneity of the problenfu‘Z )=

L : ) K5y _ o :
gests that the statistics of line- and surface-element advection{UxZ)=0. The remaining two averages are computed via

possess a high degree of universality. the standard Gaussian splitting mechanjgi3]
o - t _ _
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APPENDIX A: DERIVATION OF THE FOKKER-PLANCK 1 9 ,
Yowopn™

i
EQUATION FOR THE JOINT PDF OF MAGNETIC =-l 2 K kmin
FIELD AND LORENTZ TENSION

(AB)

intell = i (= T
Let us briefly describe théstandard procedure we used where we abbreviate j,= «j,(y=0), andx imin= & kmin(y

to derive the Fokker-Planck equatié®). =0). The above expressions have been obtained as follows.
In the case of incompressible advecting flow, the magnetic-,rhe f_unctlonal derivative that appears under the m;egrals is
field and the Lorentz tension satisfy the first-order averaged response function. It satisfies the

causality constraint in that it vanishes fde>t, whence fol-
lows the upper limit of the time integrations. Since the ve-
locity field u' is & correlated in time, the time integration is
removed and only the equal-time value of the response func-
aF +uF =u' F+u'  BFB™ (A2)  tion has to be calculated. That is done by formally integrat-
ing Eq. (A4) from 0O to t, taking the functional derivative

We start by introducing theharacteristic functionof the ~ /6U'(t’,x") of both sides, averaging, settigt', and tak-
fields B(t,x) andF(t,x) at an arbitrary fixed poing, ing causality into account. The result is

9B+ u*B', = u' B, (A1)

~ . _ 8Z(t,%) ( ) J
Z(t; N ) =(Z(t,%; m,N) )= (exdiuiB'(t,x) +iNF'(t,x)]). ——— )=yt N | 27 (X=X
(t; s N) < ( M )> < diuiB'(t,x) iF'( 3&)3) <5U](t,X')> Mj e 107)\' &r ( )
7 9
Here and in what follows the angular brackets denote en- _I)\jmzm o(x—x"). (A7)

semble averages and overtildes designate unaveraged quan-
tities. The functionZ(t; u,\) is the Fourier transform of the  pgqr integration by parts, the spatial integrations are re-

joint PDF of the vector element®'(t,x) and F'(t,X).  moyed due to the presencedfunctions. Note that we make

Clearly, Z cannot have any spatial dependence due 10 th§se of the fact that odd derivatives of the velocity correlation
homogeneity of the problem. tensor«'i (y) vanish aty=0.

_ Ugon taking the time _derivative of the unayeraged func- Upon averaging both sides of E\4) and using the ex-
tion Z(t,x;u,A) and making use of the evolution equations pressiongA5) and(A6) for the mixed averages, we obtain a
(A1) and(A2), we find thatZ satisfies closed evolution equation for the characteristic funcon
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HZ= L P 2z < __d=2 B3

t=— EK,kl Iulo',_’uk iﬁk M'o”_m J(?_)\I a ac_2(3d_2)! ( )
gt (ind=2, a.=0, ind=3, a.=1/14; this inequality can also

be derived from a generalization of the simple argument in

support of folding given in Sec. I: see Appendix Chus, for
Inverse Fourier transforming this equation yields the desirednearly incompressible” flows, the folding picture persists in

Fokker-Planck equatiot) for the joint one-point probabil- the strong sense that the parallel scale of the field remains

ity density function of the magnetic field and the Lorentz ~@pproximately constant and comparable to the characteristic

(A8)

SO D ) P —
2 KM 9 10100 101 0 o

tensionF. scale of the advecting flow. On the other hand, if the flow
The derivation of all other Fokker-Planck equations thatPossesses a fair degree of compressibility, the parallel scales
appear in this paper follows the same general outline. will start decreasing exponentially.

Let us now retrace the path taken in Sec. Il and study the

) evolution of mean-square curvature and mirror force in the
APPENDIX B: COMPRESSIBILITY EFFECTS case of arbitrary degree of compressibility. Again, equations

Let us relax the incompressibility condition and allow the (11) and(12) preserve their form with modified coefficients
advecting velocity field to possess an arbitrary degree of’k: Sk: Ym» Ymk ., Su (see Table)l None of these quanti-
compressibility. Mathematically this means that we have tdies changes its sign for any allowed values of the compress-
retain the terms inv0|ving divergences wfin the equations |b|||ty parameters. The essential structure of the solutions,
(1) and(2) and to allow the compressibility parameterand ~ therefore, does not change compared to the incompressible
b in the small-scale expansias) of the velocity correlator ~case, and the growing mean-square curva{ir® remains

to vary in the intervals the one intt_eresting guantity to watc_h._
As we discovered from the statistics of the Lorentz ten-
1 2 sion, for a<a. the anticorrelation between the magnetic-
— mgas 1, - mibs 2, (B1) field strength and the field-line curvature is preserved: while

(F?)/(B* remains constant,F%/B*) grows at the rateyy .

i . However, once the compressibility paramedeexceeds the
where the lower bounds correspond to the incompressiblg,.ii.al valuea , the ratio(F2)/(B%) starts growing as well,
and the upper to the irrotational case. We will often use a4 he anticocrrelation betwe@andK is weakened. Com-

alternative pair of compressibility parametegss=d[ 1+ (d ; ;

paring the growth rate of the mean-square curvature with
+1)a] and {=d[2+(d+3)b] that have the advantage of the growth rateye— v, 'éf the ratio(F2)/(B%), we find that
being always nonnegative and vanishing in the case of in3’K>7F— v, provided

compressible velocity field.
The exact treatment of the joint probability distribution of 3

F andB is completely analogous to that presented in Sec. Il a<a, “ad-7°

for the incompressible case. The Fokker-Planck equation is

now

(B4)

While in 2D the second critical valua, =3 lies outside of
the interval of allowed values ache[—1/3,1], in 3D we

P EK” _ sk 9 gk 5-“iB“+ 9 ek havea, = 3/5<1, which is permitted. Thus, in three dimen-
t 2 K P oB! ' oB" JF' sions, fora>3/5, the negative correlation between the field
strength and the field-line curvature is replaced by a positive
_zgkiFr) —a—B'—a'-iBS+ _‘9_F| one, so the regions of maximal growth of the field and its
P oF' JB! 1oB® JF! curvature coincide!
1 To prevent any misconception from arising with regard to
_ [i s = _‘9_ kpm_ ki rpm the quantitative character of the conditiof3) and (B4),
26, —=sF°|P+ 5 kiymn| 7= BB — 6 ——B'B . »
JF 2 JF JF we ought to remark here that the particular critical values of
g J the compressibility parameter when one or other statistical
X _J,BIBn_gz_SBan P. (B2)  correlation breaks down are, of course, largely functions of
dF dF what particular statistical averages are used to measure these

correlations. Such sensitivity is due to the high degree of
The quantitiesF?) and(B*) again satisfy equation@) and intermittency of the statistics of passively advected fields.
(8), respectively, with coefficientyr, S, andy, modified Let us discuss the implications of the new facts that have
to include the dependence on the compressibility parametetsmerged from this excursion beyond the confines of the in-
B and{. The general expressions for these coefficients areompressible advection theory. Clearly, the main feature of
listed in Table I. Note that the source tef®p remains posi- the compressible regime is that the velocity field is freed
tive for all allowed values ob. The steady-state solution of from having to preserve the volume and, along with stretch-
the form(9) continues to exist provideg: — y,<0, whichis  ing vortical motions that characterized the incompressible
satisfied for values of the compressibility parametesuch  case, there now are motions that conti@ctinflate the vol-
that umes, with magnetic-field lines trapped inside. The structure
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of the magnetic field now depends on the competition of APPENDIX C: AN ALTERNATIVE DERIVATION OF THE
stretching and contraction, whose relative importance is CRITICAL DEGREE OF COMPRESSIBILITY
measured by the compressibility parameteiVe have seen
in thi‘?‘ segtipn that stretching win; as Ionggastays below a pressibility parametea derived in Appendix B can be ob-
certain critical valuea.. Once this value is exceeded, the yained py constructing a generalization of the simple argu-
parallel scale of the field cannot be prevented from decaying,ent we gave in Sec. [formula (3)]. Upon using the

perpendicular scale, thus giving rise to “small folds,” both

scales are now deep in the subviscous range and will even- d
tually equalize when the resistive cut-off scale is reached. A aP~
tangled state will result. As increases, the anticorrelation

between the strength of the field and its curvature graduallyve find that the magnetic fielB(t,x) and the Lorentz ten-
weakens and, in 3D, is even reversed wheeaches a sec- sion F(t,x) satisfy

ond critical valuea, . This gives another indication of the

Let us demonstrate how the critical value of the com-

—pV-u, (C1)

increasingly tangled nature of the growing magnetic field. ﬂ E: E-Vu (C2)
However, as is seen in Sec. lll, the growth of the magnetic dp p ’

field in sufficiently compressible flows only takes place in a

small fraction of the total volume of the system, while else- dF F BB BB

where both the field strength and the field-line curvature re- at E: 02 Vu+ ° ;:VVU_ oo Vv.u. (€3

main relatively low. Thus, the tangled state is not set up

everywhere throughout the system, but only in a small par{ye again suppose that the parallel variatiorBoi initially

of it where there is an appreciable growing magnetic fieldon scales much smaller than those of the velocity field
This situation is, of course, due to volume contraction. TheThen the terms in EqC3) that contain second-order deriva-
distribution of the density of the advecting medium is log- tives ofu are subdominant and can be neglected. We see that
normal (highly intermittenj [32]. While (p2) and all higher-  in such a casB/p andF/p? satisfy the same equation, which
density moments grow exponentialligg. (C7) of Appendix is the equation for the advection of(eontravariant passive

C], the growth of the density only occurs in a small fraction vectorW,

of the volume of the system. This is very natural and could

not have been otherwise, for, as the total mass of the medium EW:W~ vu (Ca)

is conserved,(p)=const, the exponential growth of the dt '
higher moments of the density must be compensated for by o ) ]
the exponential contraction of the regions that are responlhe statistics of passive vectors were tregsia particular
sible for this growth(In this context, one may also recall the ¢ase of the statistics of general tensor figldsRef. [31]. It
results of Chertkovetal. [44] who found that for WasS proved there that these statistics could be separated into

compressible-enough advecting velocity fields, the Liapuno(V© independenparts: one universal, the other nonuniversal,
exponents for the Lagrangian fluid-particle separation be'Ehe I:_;\tter belng expressible in terms of th?,dStat'St'C.S of the
come negative, so the fluid-particle trajectories tend to congens'ty‘ _SpeC|_f|caIIy, the even momenpst are univer-
verge) The density statistics are known to be intimately re-SaI functions independent of the statistics of the density

> L Therefore, the even moments Bf p'~ @ and of F/p?~ 1M
ftEd t%'theosﬁtlstlcis ?I]the _magnet!:% figkbe Rletf[SZLa? d should also be independent of the statistics of the density.
ppendix Q. Namely, there is a positive correlation be WeenMaking use of these results, one can write

the density of the medium and the strength of the frozen-in
magnetic field. This positive correlation can be deduced from )
(B “>=<(

2n
the fact established in Ref32] that even moments of —) P2n>:ConStfd(n,tsz”(d_l)/d),

p

B/p'~d are universal functions independent of the density (5
statistics. The magnetic field will, therefore, tend to grow
wherever the density does. F\2n

Finally, let us note that, in the case of compressible MHD <F2”>:< (—2) P4n> =constf4(n,t)(p?"2d- 1),
turbulence, the condition for the onset of nonlinearity is de- P (C6)

termined not just by the magnitude of the Lorentz tension

B- VB, but rather by that of the total Lorentz force divided where f4(n,t) =((Wp¥¥)?2") is a universal function. Both
by the density of the fluid: € VB%/2+B- VB)/p, which in-  f4(n,t) and the moments of the density field were calculated
cludes the magnetic pressure term. The latter will grow exin Ref.[32],

ponentially dueboth to the amplification of the magnetic d—1

energyand to the decrease of thigotal) characteristic scale _ B

of the magnetic field. It is not hard to see that it will quickly fd(n,t)—constexl d n2n+dd+ajet], (€7
outgrow the tension term and the nonlinear effect associated

with magnetic pressure will dominate. (p?"y=constexpn(2n—1) Bx,t], (C8)
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where B=d[1+a(d+1)] (vanishes in the incompressible
casg. With the aid of the above formulas, it is straightfor-
ward to calculate

(F5

k_ﬁ= Gl xe”',  y=[2(3d-2)a—(d—2)]«;.

(C9

We see thaty <0 for values of the compressibility param-
etera such that

PHYSICAL REVIEW B5 016305

d—2

2(3d—-2)° (€10

a<a.=

We have thus recovered the inequaliB3).

We would like to emphasize that the above derivation
clearly demonstrates that the effects of compressibility on the
field structure are due to the crucial part that the density of
the medium plays in determining the statistics of the mag-
netic field in compressible flows.
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