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Structure of small-scale magnetic fields in the kinematic dynamo theory
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A weak fluctuating magnetic field embedded into a a turbulent conducting medium grows exponentially
while its characteristic scale decays. In the interstellar medium and protogalactic plasmas, the magnetic Prandtl
number is very large, so a broad spectrum of growing magnetic fluctuations is excited at small~subviscous!
scales. The condition for the onset of nonlinear back reaction depends on the structure of the field lines. We
study the statistical correlations that are set up in the field pattern and show that the magnetic-field lines
possess a folding structure, where most of the scale decrease is due to the field variation across itself~rapid
transverse direction reversals!, while the scale of the field variation along itself stays approximately constant.
Specifically, we find that, though both the magnetic energy and the mean-square curvature of the field lines
grow exponentially, the field strength and the field-line curvature are anticorrelated, i.e., the curved field is
relatively weak, while the growing field is relatively flat. The detailed analysis of the statistics of the curvature
shows that it possesses a stationary limiting distribution with the bulk located at the values of curvature
comparable to the characteristic wave number of the velocity field and a power tail extending to large values
of curvature where it is eventually cut off by the resistive regularization. The regions of large curvature,
therefore, occupy only a small fraction of the total volume of the system. Our theoretical results are corrobo-
rated by direct numerical simulations. The implication of the folding effect is that the advent of the Lorentz
back reaction occurs when the magnetic energy approaches that of the smallest turbulent eddies. Our results
also directly apply to the problem of statistical geometry of the material lines in a random flow.
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I. INTRODUCTION

It was demonstrated by Batchelor@1# that a weak mag-
netic field passively advected by a turbulent velocity fie
would grow, while its characteristic scale would decay. If t
magnetic Prandtl number~the ratio of fluid viscosityn and
magnetic diffusivityh, Pr5n/h) is large, there is a broad
range of subviscous scales available to magnetic fluctuati
but not to fluid motions. This physical situation is realized
such astrophysical environments as the interstellar med
and protogalactic plasmas, where Pr ranges between 1014 and
1022, which provides for 7 to 11 decades of subviscous ran
The weak-field~kinematic! regime is believed to represen
the initial stage of the formation of the currently observ
magnetic fields of galaxies. These fields, which posses
coherent large-scale component and whose energies are
parable to the energies of fluid motions of the interste
medium @2–4#, are thought to have originated from ve
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weak initial seed fields in the galaxies~or protogalaxies!,
which have been amplified and brought to their curre
strength and configuration by the dynamo action of the~pro-
to!galactic turbulent plasmas~see Refs.@5,6# and references
therein!. Constructing a definitive and quantitative theory
this process remains an open problem. This theory must
essarily be a nonlinear one, because the observed field
not weak. However, developing such a nonlinear theory
the magnetic-field evolution will require a thorough unde
standing of its linear~kinematic! precursor. In fact, this poin
holds with greater force in view of the recent theoretical a
numerical advances which suggest that the saturated sp
of magnetic fluctuations are largely determined by the tur
lent advection processes that drive the kinematic dyna
@7–9#. In this work, we study the geometrical structure of t
fluctuating small-scale magnetic fields produced by the ki
matic stage of the high-Pr dynamo. Our findings will ha
direct bearing on such issues as the condition for the onse
nonlinear effects, the geometry of the field as it enters
nonlinear stage of its evolution, and the feasibility of tran
fering the small-scale magnetic fluctuation energy to larg
scale components of the field.

In an ideal ~or highly conducting! fluid, the magnetic
fields are~nearly! frozen into the ambient flow. Therefore
besides being important for the astrophysical dynamo as
lined above, studying passive advection of the magnetic fi
is equivalent to studying the statistics of stretching and d
tortion of material lines by random flows, which is a fund
mental problem in the theory of turbulence@10#. This subject
has attracted considerable attention@10–21#. Our results on
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the statistical geometry of magnetic field lines will have
rect applicability in this area. For the sake of unity of exp
sition, we will proceed to develop our theory in the langua
of the kinematic-dynamo problem and relegate the draw
of the parallels with the problem of material-line advecti
to the end of the discussion section, which concludes
work ~Sec. IV!.

The mathematical formulation and treatment of the sm
scale kinematic-dynamo problem were initiated by Kaza
sev @22#. Kulsrud and Anderson@23# developed a detailed
spectral theory of the small-scale magnetic fluctuations.~A
comprehensive exposition of the modern state of the sec
order statistical theory of the small-scale kinematic dyna
with large Prandtl numbers, as well as the generalization
Kazantsev’s and Kulsrud and Anderson’s theories to the c
of arbitrarily compressible velocity fields, can be found
Ref. @6#.! It was established that the characteristic scale
the advected magnetic field decreases exponentially fast
rate comparable to that of the field growth. The magne
spectrum quickly shifts its bulk toward scales extrem
small compared to those of the velocity field. The decre
of the characteristic scale is checked only by the Ohmic
sistive dissipation. Such a regime persists as long as the
nematic approximation remains valid.

It is interesting, and, in fact, necessary for a variety
applications, to inquire what those small-scale fields ‘‘lo
like’’: do they really tangle into a completely chaotic an
fine-scaled web? The most important reason for such an
quiry is that it is the structure, not just the strength, of t
small-scale magnetic fields that determines the conditions
the onset of the nonlinear regime. Indeed, we observe
the Lorentz tension forceB•“B only involves theparallel
gradient of the magnetic field@24#. Heuristically, the nonlin-
ear Lorentz feedback will start to play an important ro
when the Lorentz tension force becomes comparable to i
tial terms in the hydrodynamic momentum equation, nam
whenB2;(kn /ki)ru2, whereu is the velocity field,kn is the
smallest-eddy wave number,r is the density of the medium
and ki is the characteristic wave number of the magne
field variation along itself. For chaotically tangled fields, t
ratio kn /ki can be as small askn /kh;Pr21/2, wherekh is the
resistive-regularization wave number. The kinematic stag
the dynamo will then only produce very weak small-sc
fields. On the other hand, ifki is restricted from growing to
be as large askh , the kinematic dynamo can drive sma
scale magnetic fluctuations of energies approaching tha
the smallest turbulent eddies. Much of the previous work
the small-scale dynamo and such issues as ambipolar d
ing and viscous relaxation of small-scale magnetic fluct
tions was based on specific assumptions about the magn
of ki @23,25,26#. Understanding the structure of the magne
field, and, in particular, the statistics of the field-line curv
ture, is also crucial for the study of the effect of the Brag
skii tensor viscosity@27# on the small-scale magnetic field
@28,29#.

It was suggested by Cowley@30# on intuitive grounds and
later supported by numerical simulations@7–9# that a large-
scale advecting field, which is locally just a linear shear flo
could only stretch the magnetic field and make it flip dire
01630
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tion ever more rapidly in the plane transverse to the fi
itself @see Fig. 1 and Fig. 3~a!#. It was argued that no appre
ciable change of the characteristic scales at which the m
netic field variesalong itself could, therefore, be produced
In other words, the exponential increase of the typical flu
tuation wave numberk5(k'

2 1ki
2)1/2 is expected to be due

mostly to the increase ofk' ~rapid transverse direction re
versals!, while ki stays approximately unchanged, sok'

@ki;kn . Such folding natureof the small-scale fields is
consistent with the predominance of volume deformatio
with greatly disparate spatial dimensions, which is a w
known fact in the the theory of kinematic dynamo and p
sive advection@31,32#. It is also, of course, directly related t
the extreme flux-cancellation property~fine-scale spatial os
cillation of field orientation! of the dynamo-generated mag
netic fields in maps and chaotic flows extensively studied
Ott and co-workers~see review@34# and references therein!
and by Cattaneo@33#.

In this paper, we construct an explicit statistical descr
tion of the folding effect in the small-scale kinemati
dynamo theory and study the correlations that are set
between the curvature of the magnetic field lines and
strength of the magnetic field. Since we are interested in
geometrical properties of the field, we neglect the resist
effects present at extremely small scales and consider
diffusion-free induction equation

d

dt
B5B•¹u2B“•u, ~1!

where d/dt5] t1u•“ is the full convective derivative,
B(t,x) is the passive magnetic field andu(t,x) is the exter-
nally prescribed velocity field. Let us introduce an auxilia
field F5B•“B, which is, of course, the magnetic-tensio
part of the Lorentz force. It is readily seen thatF(t,x)
evolves according to the following equation:

d

dt
F5F•“u22F“•u1BB:““u2BB•““•u. ~2!

Let us first describe a very simple semiquantitative argum
that supports the folding picture. In the incompressible c
(“•u50), we notice that the evolution equation~2! for the
Lorentz tension forceF is identical to that for the magneti
field with the exception of the termBB:““u, which con-

FIG. 1. Stretching of magnetic-field lines by a linear shear flo
5-2
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STRUCTURE OF SMALL-SCALE MAGNETIC FIELDS IN . . . PHYSICAL REVIEW E65 016305
tains second derivatives of the velocity field. Suppose tha
initial distribution of the small-scale magnetic fluctuatio
has been set up in such a way that its characteristic par
and perpendicular wave numbers are comparable and
are much greater than the characteristic wave number o
velocity field: ki;k'@kn . Then the second derivatives o
the velocity field can be neglected and the mean-square
sion force^F2& must grow in the same way as the magne
energy^B2&. For the characteristic wave number of the ma
netic field we then have

ki
2;

^F2&

^B4&
}

^B2&

^B4&
,const exp~2g2t !, ~3!

whereg2 is the growth rate of the magnetic energy^B2& and
we have used the obvious fact that^B4&>^B2&2. Thus,any
initial field arrangement where magnetic-field lines are ch
otically tangled will decay toward a folding state at the ra
comparable to the rate of the magnetic energy growth@cf.
Fig. 4~a!#.

In order to see how the situation develops whenki
2 be-

comes comparable tokn
2 , a more complete analysis of th

statistics of the magnetic field and the Lorentz tension
required. In Sec. II, we carry out such an analysis exactly
the case of incompressible velocity field, and prove thatki

2

5^F2&/^B4& stabilizes at a value;kn
2 . We then take up the

question of the evolution of the magnetic curvature, wh
was recently raised by Malyshkin@35#. We confirm Malysh-
kin’s result on the exponential growth of the mean-squ
curvature. Most importantly, we find that, while the ratio
averageŝ F2&/^B4& tends to a constant, the averaged ra
^F2/B4& follows the exponential growth of the mean-squa
curvature. This discrepancy implies that the magnetic-fi
strength and the curvature of the magnetic-field lines
very strongly anticorrelated, i.e., the magnetic field is we
wherever the curvature is large, and vice versa. The pic
of folded magnetic-field lines is manifestly consistent w
this property, while that of chaotically tangled ones is n
We argue that the large values of curvature in the bend
the folds account for the overall growth of the mean-squ
curvature, even though these bends occupy only a small f
tion of the total volume of the system. At the end of Sec.
we present a simple qualitative description of the folde
magnetic-field-line geometry that makes possible the sta
tical correlations we have found.

In Sec. III, we undertake a more detailed study of t
one-point distribution of the magnetic-field-line curvatu
and derive equations for its probability density functi
~PDF! and all of its moments. This is necessary in order
prove the statement of Sec. II that the curvature only gro
exponentially in a small fraction of the total volume of th
system. We discover that, while the moments of the cur
ture diverge exponentially in time, its distribution tends to
stationary limiting profile whose bulk is concentrated at t
values of curvature;kn and which has a power tail at larg
values of curvature~the exponent is213/7 in the 3D incom-
pressible case!. We conclude that the fraction of the volum
where the growth of the curvature takes place tends to z
01630
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with time. The limiting values of the curvature moments a
determined by the resistive regularization at the scales wh
the magnetic diffusivity becomes important:kh;Pr1/2kn .

Our theoretical results on the folding structure of the ma
netic field, the anticorrelation between the field strength a
the field-line curvature~Sec. II!, the growth of the curvature
moments, and the stationary limiting distribution of the cu
vature ~Sec. III! are backed up by the numerical eviden
based on the three-dimensional~3D! incompressible magne
tohydrodynamics~MHD! simulations by Maron and Cowley
@9#. The relevant numerical results are reported at the en
each section. The agreement between our theory and d
numerical simulations of a realistic MHD environment
quite remarkable, especially in view of the idealized char
ter of our modeling assumptions.

In Sec. IV, we summarize our findings and discuss
implications for the nonlinear dynamo theory. The fund
mental consequence of the folding effect~i.e., of the fact that
the parallel scale of the small-scale magnetic fields does
decay! is that the nonlinear regime sets in only when t
magnetic energy becomes comparable to the energy of
smallest turbulent eddies. We also explain how our res
apply to the problem of statistical geometry of material lin
in isotropic turbulence and relate our conclusions to the p
vious work on this subject. Numerical results obtained
several authors in this context provide further confirmat
of our theory. The fact that the same set of basic feature
the curvature statistics is found in a number of different a
proaches and models, many of them much more reali
than ours, indicates that these statistics may have a lar
universal character.

The paper also includes three appendixes. In Appendix
we explain the technical details of the derivation of t
Fokker-Planck equations used in the paper. Appendix B
devoted to the study of the structure of the small-scale m
netic fields for the case of advecting flows that possess
arbitrary degree of compressibility. We find that the foldin
effect as described above only persists as long as the de
of compressibility of the flow remains below a certain cri
cal value. Once this value is exceeded, both the parallel
the perpendicular scales of the magnetic-field variation de
exponentially fast~albeit at different rates! into the subvis-
cous scale range and towards the resistive scales. If this
cay continues until the parallel and the perpendicular sc
are equalized, the folding pattern is replaced by the tang
one. However, the tangled state is only set up in a sm
fraction of the total volume where the density of the mediu
is high and where most of the magnetic-field growth tak
place. In the larger~and less dense! part of the system, the
magnetic field stays relatively weak and flat. This new si
ation brought about by compressibility is due to the ability
compressible flows to shrink volumes of the medium w
frozen-in magnetic field lines. The structure of the field
determined by the competition between stretching and c
traction. In Appendix C, the above consideration of the co
pressibility effects is related to the general theory of pass
advection in compressible flows developed in Ref.@32#.
5-3
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II. STATISTICS OF LORENTZ TENSION AND
MAGNETIC-FIELD-LINE CURVATURE

In this section, we will restrict our consideration to th
case of incompressible velocity field. The evolution equ
tions for the magnetic fieldB(t,x) and the Lorentz tension
F(t,x) in this case are obtained from the equations~1! and
~2! by setting“•u50. As is customary in the problems o
passive advection@36,12# and kinematic dynamo@22#, we
choose the advecting velocityu(t,x) to be a Gaussian white
noise-like random field~the Kazantsev-Kraichnan flow!,
whose statistics are defined by its second-order correla
tensor

^ui~ t,x!uj~ t8,x8!&5d~ t2t8!k i j ~x2x8!. ~4!

As we will only have to deal with one-point statistical qua
tities, all the relevant information about the velocity corre
tion properties is contained in the Taylor expansion ofk i j

around the origin@37#

k i j ~y!5k0d i j 2
1

2
k2@y2d i j 12ayiyj #

1
1

4
k4y2@y2d i j 12byiyj #1•••, ~5!

as y→0. In order to ensure incompressibility, we must s
a521/(d11) and b522/(d13), whered is the dimen-
sion of space. Our consideration is formally ind dimensions,
so that both the two- and the three-dimensional cases ca
considered in a unified framework.

The fieldsB(t,x) and F(t,x) satisfy a closed system o
equations, and, in order to study their statistical propert
we derive the Fokker-Planck equation for the joint PDF
B(t,x) and F(t,x) at an arbitrary fixed pointx. Due to the
homogeneity of the problem, this one-point PDFP(t;B,F) is
independent ofx. A standard derivation procedure explain
in Appendix A leads to the following equation forP:

] tP52
1

2
k ,kl

i j S ]

]Bi Bk1
]

]Fi FkD S ]

]Bj Bl1
]

]F j Fl D P

1
1

2
k ,klmn

i j ]2

]Fi]F j BkBlBmBnP. ~6!

The indices following a comma in the subscripts alwa
mean spatial derivatives:,k5]/]xk. k ,kl

i j and k ,klmn
i j are the

tensors of second and fourth derivatives, respectively, of
velocity correlatork i j (y) taken aty50. The derivatives with
respect toBi and Fi in Eq. ~6! act rightwards onall terms
they multiply. The Einstein convention of summing over r
peated indices is used throughout. Equation~6! contains all
the one-point statistical information about the distribution
B and F and can, therefore, be employed to calculate a
individual or mixed averages of these quantities. This is d
by multiplying Eq. ~6! through by the quantity whose ave
age is sought and integrating both sides with respect toB and
F. The derivatives are removed via integration by parts a
an ordinary differential equation is established for the des
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average, whose time derivative is thereby linked to a lin
combination of other averages~including itself!. The latter
averages must in turn be calculated in the same fashion.
will see that in many cases of interest, very simple line
equations or closed systems of linear equations emerge.

Let us start by calculating the mean-square Lorentz t
sion. We get

] t^F
2&5gF^F2&1SF^B4&, ~7!

] t^B
4&5g4^B

4&. ~8!

The expressions for the coefficientsgF , SF , g4, as well as
for others that will arise in what follows, are collected
Table I. Note that, in accordance with the simple argum
we described in Sec. I, the growth rategF of ^F2& is the
same as that of the magnetic energy^B2&: gF5g2.

Introducing the characteristic parallel wave number of
magnetic fluctuations according toki

25^F2&/^B4&, we
readily find

ki
2~ t !5S ki

2~0!2
SF

g42gF
De2(g42gF)t1

SF

g42gF

→ SF

g42gF
;

k4

k2
;kn

2 , t→`, ~9!

wherekn is the characteristic wave number of the advect
flow. The exponential decay ofki

2 was already captured in
the qualitative argument given in Sec. I@see formula~3!#.
The existence of a steady limiting solution is due to t
presence of the second derivatives of the velocity field in
~2!. By taking them into account, we have thus explicit
proved thatki

2;kn
2 .

Let us now undertake a slightly more detailed analysis
the magnetic-field structure. The Lorentz tension can be
composed into two orthogonal components

F5B2S b̂•“b̂1b̂
¹ iB

B D5B2~K1M !, ~10!

whereb̂5B/B is the unit vector in the direction of the mag
netic field, and¹ i5b̂•“. The first term is the magnetic cur
vature vectorK5b̂•“b̂, the second term,M5b̂¹ iB/B,
measures the mirror effect and will, for the sake of brev
be henceforth referred to as the mirror force. SinceK'M ,
we have^F2/B4&5^K2&1^M2&. The mean squares of bot
of these quantities can be expressed in terms of mixed a
ages ofF and B: ^M2&5^(F•B)2/B6& and ^K2&5^F2/B4&
2^(F•B)2/B6&, which we proceed to calculate with the a
of Eq. ~6!,

] t^K
2&5gK^K2&1SK , ~11!

] t^M2&52gM^M2&1gMK^K2&1SM ~12!

~see Table I for the values of the coefficients!. The exact
solution of Eq.~11! is
5-4
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TABLE I. Coefficients for Sec. II. The general formulas listed in this table are for the case of arbit
compressible flows~see Appendix B!. The results for the incompressible case considered in Sec. II
obtained by settingb50 andz50.

Incompressible Irrotational

Coefficient Expression d53 d52 d53 d52

Compressibility parameters
a see expansion~5! 21/4 21/3 1 1
b see expansion~5! 21/3 22/5 2 2
b d@11(d11)a# 0 0 15 8
z d@21(d13)b# 0 0 42 24

Growth rates~from first derivatives ofu)

g2 /k2
d21

d11
~d121b! 5/2 4/3 10 4

g4 /k2 2
d21

d11
~d1413b! 7 4 52 20

gF /k2
~d21!~d12!

d11
1

2~3d222!

d~d11!
b 5/2 4/3 65 28

gK /k2
~92d!d22

d11
1

2~52d!

d~d11!
b 4 4 9 12

gM /k2
d22

d11 Sd211
2b

d D 1/2 0 3 0

gMK /k2
2d

d11 S11
b

d2D 3/2 4/3 4 4

Source terms~from second derivatives ofu)

SF /k4 @6(d14)1z#
d21
d13

14 36/5 28 12

SK /k4 6(d21) 12 6 12 6

SM /k4 ~61z!
d21

d13
2 6/5 16 6
in

-
y

a

e

h
tiv
th
o

rag-
eld

ag-
s.
o-

n-
ak
ar-
lly
uld
ry-
to

to

ng
-
tic-
he
me
the
ure
^K2&~ t !5S ^K2&~0!1
SK

gK
DegKt2

SK

gK
, ~13!

so the magnetic curvature grows exponentially~even if it is
initially zero!. It is instructive to express its growth rate
terms of the growth rate of the magnetic energy^B2&. In
three dimensions, this givesgK5(16/5)g2/2, which agrees
with the result Malyshkin@35# obtained by a direct calcula
tion of ^K2& in the spirit of the Kulsrud-Anderson theor
@23#. We also see that the mean-square mirror force@Eq.
~12!# is not an independently interesting quantity: after
transient initial time, it is reduced to ‘‘mirror’’ the evolution
of the mean-square curvature:

^M2&~ t !;
gMK

gK1gM
^K2&~ t !, t→`. ~14!

Thus, we have established that, while the ratio of the av
ageŝ F2&/^B4& tends to a constant value;kn

2 , the averaged
ratio ^F2/B4&;^K2&;egKt grows exponentially. Since bot
of these quantities have the dimension and the intui
meaning of some characteristic parallel wave numbers,
question inevitably arises as to the physical interpretation
01630
r-

e
e
f

such drastic dependence on the relative order of the ave
ing and the normalization with respect to the magnetic-fi
strength. This dependence clearly indicates thatthere exists a
very strong anticorrelation between the strength of the m
netic field and the curvature of the magnetic-field line
Namely, while both the mean-square curvature and all m
ments ofB grow exponentially, the magnetic fields are co
figured in such a way that the magnetic field is very we
wherever its curvature is large, and vice versa. No such
rangement would be possible if the field were chaotica
tangled everywhere. Indeed, a tangled state of this sort wo
imply that the absolute values of the curvature were eve
where comparably large and growing. But then, in order
compensate for the growth of the curvature, the growth ofB4

would have to be partially or fully suppressed compared
that mandated by Eq.~8!.

On the other hand, it is easily envisioned how the stro
anticorrelation betweenB andK can be realized in the fold
ing picture. While the curvature is quite small and magne
field grows in most of the volume, which is occupied by t
folds, the situation is reversed in the small part of the volu
where magnetic field lines bend and reverse direction:
curvature there is very large and magnetic field weak. Fig
5-5
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2 illustrates the typical geometry of the folding magnet
field lines. This picture is in 2D, but can also be interpre
as a cross section of a 3D geometry of a sheetlike confi
ration. Flux conservation (*B•dS50) implies Bbend/Bfold
; l' / l b , where l' is the characteristic scale of magneti
field variationacrossitself in the folding region andl b is the
characteristic size of the bend. The velocity shear that p
duces~or ‘‘sharpens’’! the bend acts in such a way thatl' is
decreased whilel b is amplified, sol b@ l' , whenceBbend
!Bfold .

It must be recognized, however, that the presence o
anticorrelation between the magnetic-field strength and
magnetic-field-line curvature does not in itself prove that
volume where the growth of the curvature occurs constitu
only a small fraction of the total volume of the system. I
deed, examples of magnetic fields can be constructed
possess such an anticorrelation and where, at the same
the mean-square curvature grows in any arbitrary fraction
the total volume that can be specified beforehand. Fur
study of the curvature statistics, is, therefore required
settle this issue. This will be carried out in Sec. III, where t
smallness of the volume where the curvature grows is c
firmed.

Finally, let us reiterate that the presence of the fold
structure has found repeated confirmation by numerical
dence. Most recently, folding was extensively studied in
and 3D numerical simulations of the small-scale dynamo
fect in a viscosity-dominated MHD model of Kinneyet al.
@7#, and in 3D forced-MHD simulations of Maron and Cow
ley @9#. Here we present the numerical results that are ba
on the latter work and directly relate to the theory develop
in this section. All numerical results presented in this pa
derive from a 1283 spectral forced-MHD code written by J
Maron and described in detail in Refs.@38,9#. The external
forcing is on the system-size scale andd correlated in time.
In the simulations quoted in this paper, the hydrodynam

FIG. 2. The geometry of the folding field lines in the vicinity o
the bend. The dashed lines correspond to the surfaces on whic
magnetic field vanishes. The shaded area is the cross section o
volume that can be used for the flux-conservation estim
Bbend/Bfold; l' / l b . All the flux is through the surfaces whose cro
sections are depicted by the bold lines.
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Reynolds numbers are quite small, so the advecting fl
flows are essentially determined by the balance of the forc
and the viscous dissipation. However, this is not really
handicap, as the purpose of the numerical results prese
here is to illustrate the kinematic-dynamo properties at s
viscous scales. More discussion of this issue can be foun
Refs.@7,8#.

In Fig. 3, we give the greyscale plots of the magnetic-fie
strength and the absolute value of the magnetic curva
corresponding to a typical instantaneous magnetic-field c
figuration observed in a simulated MHD evironment duri
the kinematic stage of the small-scale dynamo. The fold
pattern strikingly similar to the one described above
clearly in evidence~cf. Fig. 2!. The anticorrelation between
the field strength and the field-line curvature, as well as
intermittent nature of the distribution of both~cf. Sec. III! are
also manifest. Figure 4~a! shows how the ratioki

2

5^F2&/^B4& adjusts to a stationary value;kn
2 from an initial

state where the field is chaotically tangled at subvisc
scales. We show results of two simulations with such
~artificial! initial field and different values ofkn . In both
cases, exponential decay ofki

2(t) toward stationary values;
a few timeskn

2 is observed, which corroborates Eq.~9!. Fig-
ure 4~b! portrays the time evolution of the ratiôF2&/^B4&
and of the mean-square curvature^K2& in a simulation that
starts with the magnetic field concentrated at the veloc
scales. The ratiôF2&/^B4& again stabilizes at a value; a
few timeskn

2 as predicted by our solution~9!. The exponen-
tial growth of the mean square curvature^K2& proceeds in
accordance with our solution~13! until it is checked by the
resistive regularization at a stationary value^K2&;kh

2 .
While our theory was constructed for the diffusion-free r
gime and, therefore, did not include this effect, the resist
saturation of the curvature is naturally an expected outco
~see Sec. III for more discussion of this issue!.

III. DISTRIBUTION OF MAGNETIC-FIELD-LINE
CURVATURE AND MAGNETIC-FIELD STRENGTH

In the previous section, we indicated the need for a stu
of the curvature statistics that would go beyond the evolut
of the mean square. In this section, we fulfill this progra
and delve deeper into the detailed properties of the distr
tion of the magnetic field and its curvature.

The Fokker-Planck equation for the one-point PDF of t
magnetic-field-line curvatureK5b̂•“b̂ is most conveniently
derived on the basis of the folowing coupled evolution eq
tions for K and the magnetic-field directionb̂:

d

dt
K5K•~“u!•~ Î2b̂b̂!2b̂Kb̂ :“u22Kb̂b̂:“u

1b̂b̂:~““u!•~ Î2b̂b̂!, ~15!

d

dt
b̂5b̂•~“u!•~ Î2b̂b̂!, ~16!

the
the
te
5-6
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STRUCTURE OF SMALL-SCALE MAGNETIC FIELDS IN . . . PHYSICAL REVIEW E65 016305
FIG. 3. Instanteneous magnetic-field configuration in the kinematic regime~numerical results!. These are grayscale plots of 2D cro
sections of the 3D snapshots of~a! the magnetic-field strength and~b! the absolute value of the field-line curvature. These plots are from
same simulation as Fig. 4~b!. The field strength and the curvature snapshots@plots ~a! and~b!# are taken at the same momentt58.2 and at
the same cross section. Darker regions correspond to larger values of the fields. In plot~a!, ^B&.0.003,^B2&1/2.0.004,^B4&1/4.0.006, and
the maximum value of B throughout the system is.0.025. The regions that are pitch black in the plot encompass fields stronger than
All of these values correspond to magnetic-field energies well below the nonlinear-saturation threshold. The specific units of
strength are, of course, of no consequence here. In plot~b!, ^K&.50, ^K2&1/2.70, ^K4&1/4.110, and the maximum value ofK is .520. The
pitch-black regions of the plot correspond to curvatures larger than 400. The curvature has units of inverse length, based on the b

FIG. 4. Anticorrelation between the magnetic-field strength and the field-line curvature and growth of the mean-square c
~numerical results!. ~a! Time evolution of^F2&/^B4& in two simulations where the initial magnetic field is uniformly tangled at subvisc
scales. The hollow dots correspond to the simulation with Pr5100, kn;25; the filled dots correspond to the simulation with Pr52500,
kn;5. ~b! Time evolution of^F2&/^B4& ~hollow dots! and ^K2& ~filled dots! in a simulation with the initially flat magnetic field varying
transversely at the velocity scales (ki50, k';kn). In this simulation, Pr52500, kn;5, kh;250. The ratiô F2&/^B4& again stabilizes at a
value ; a few timeskn

2 . In both plots, the quantities plotted have units of inverse length. These are based on the box size 1.
measured in units of the smallest-eddy turnover time^u“3uu2&21/2 ~in units based on box size 1 and forcing power 1, this quantity
;0.22).
016305-7
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where Î is the unit dyadic and colons denote double d
products executed according toKb̂ :“u5K•(b̂•“u), etc.
Both of the above equations are direct corollaries of the
duction equation~1!. It is easy to see that these equatio
respect the conservation lawsub̂u51 andb̂•K50. Note that,
in this section, we work with arbitrarily compressible velo
ity fields, sou is not required to be divergence-free. It will b
seen, however, that none of the essential features of the
vature statistics are affected by the compressibility.

The averaging procedure that leads to the Fokker-Pla
equation for the joint PDFP(t;K ,b̂) does not involve any
nonstandard steps and is fully analogous to that used to
rive the Fokker-Planck equation~6! ~see Appendix A!. The
result is

] tP52
1

2
k ,kl

i j S 2d i
k1

]

]bi bk1
]

]Ki Kk2
]

]br brbkbi

22
]

]Kr Krbkbi2
]

]Kr brKkbi2
]

]Kr brbkKi D
3S ]

]bj bl1
]

]K j Kl2
]

]bs bsblbj22
]

]Ks Ksblbj

2
]

]Ks bsKlbj2
]

]Ks bsblK j D P

1
1

2
k ,klmn

i j S ]

]Ki bkbm2
]

]Kr brbkbmbi D
3S ]

]K j blbn2
]

]Ks bsblbnbj D P. ~17!

A major simplification of this equation becomes possible
one recalls that the joint distributionP(t;K ,b̂) is subject to
two constraints:ub̂u51 and b̂•K50. Also taking into ac-
count the spatial isotropy of the problem, we conclude t
the following factorization holds:

P~ t;K ,b̂!5d~ ub̂u221!d~ b̂•K !PK~ t;K !. ~18!

The functionPK(t;K) is then found to satisfy the following
reduced Fokker-Planck equation:

] tPK5
1

2~d11!
k2F S 5d211

6

d
b DK2PK9

1S 11d226d111
2~7d22!

d
b DKPK8

1~d21!~2d21!S 3d211
4

d
b D PKG

13k4S PK9 1
d22

K
PK8 D , ~19!

where primes denote partial derivatives with respect toK, the
compressibility parameterb5d@11(d11)a# is non-
negative and vanishes in the incompressible case, andk2 ,
01630
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k4, anda are coefficients of the small-scale expansion~5! of
the velocity correlator. Note that the distribution of the cu
vature is independent of the second compressibility par
eterb. The normalization rule forPK(t;K) follows from the
normalization of the original PDFP(t;K ,b̂) and from the
factorization ~18!: (1/2)SdSd21*0

`dKKd22PK(t;K)51,
where Sd52pd/2/G(d/2) is the area of a unit sphere ind
dimensions. Absorbing the geometrical prefactor in
PK(t;K), we conclude that the true PDF~in the sense that it
induces a measure on the volume of the system and i
grates to unity! is Kd22PK(t;K). Note that, since the curva
ture vector must always remain perpendicular to the dir
tion of the magnetic field, the curvature distribution
effectively restricted tod21 dimensions.

It is now straightforward to establish the set of evoluti
equations for the even moments of the curvature

] t^K
2n&5F2~5d21!

d11
n2d1

2

d S 6n

d11
21Db Gnk2^K

2n&

16~d12n23!nk4^K
2(n21)&, n>1. ~20!

For n51, Eq. ~20! reproduces the results for the mea
square curvature that were obtained in Sec. II and Appen
B @see Eq.~11! and Table I#. The higher moments of the
curvature are coupled to the lower ones in a recursive fa
ion, but also have their own growth rates that increase q
dratically with n. This latter kind of intermittency is very
similar to that encountered in earlier studies of the statis
of the magnetic-field strength@31,32#. For the sake of com-
parison, let us list here the Fokker-Planck equation that
termines the PDFBd21PB(t;B) of the magnetic-field
strength B and the evolution equation for its momen
^B2n&5Sd*0

`dBBd2112nPB(t;B),

] tPB5
1

2
k2

d21

d11
@~11b!B2PB91~d11!~112b!BPB8

1d~d11!bPB#, ~21!

] t^B
2n&5

d21

d11
@2n1d1~2n21!b#nk2^B

2n&. ~22!

The primes in Eq.~21! denote derivatives with respect toB.
We note that Eq.~8! is a particular case of Eq.~22!. Direct
derivation of the above equations by averaging the induc
equation~1! is quite standard. Details can be found in R
@39#. Equation~21! can also be obtained by integrating o
theFi dependence in Eq.~B2! and using the spatial isotrop
of the magnetic-field distribution. Equation~22! is a direct
consequence of Eq.~21!.

We now turn to the main objective of this section, name
estimating the fraction of the total volume of the syste
where the curvature growth occurs. In Eq.~19!, denote byD,
S, andG the coefficients in front ofK2PK9 , KPK8 , andPK ,
respectively. Now rescale time and curvature according
Dt⇒t and K/K* ⇒K, where K* 5(3k4 /D)1/2;kn ~recall
5-8



in

e

d

a
re

n

tia
i

e
a

in

-

th

ail.
ted

g to

is
uld
lues

f
atly
is,
he

e
mal

e,
up.
ile
of
e-

-

ak-

ry

STRUCTURE OF SMALL-SCALE MAGNETIC FIELDS IN . . . PHYSICAL REVIEW E65 016305
that kn is the characteristic wave number of the advect
velocity field!. We can now rewrite Eq.~19! in the following
nondimensionalized form:

] tPK5~11K2!PK9 1S sK1
d22

K D PK8 1~d21!~s2d!PK ,

~23!

where we have used the fact thatG5(d21)(S2Dd) and
denoted

s5
S

D
5

11d226d1112~7d22!b/d

5d2116b/d
. ~24!

Besides the dimension of space, the only essential param
of the curvature distribution iss, which changes withd and
the degree of compressibility. The correct boundary con
tions for Eq. ~23! follow from the normalizability require-
ment*0

`dKKd22PK(t;K),`,

@Kd22PK8 ~ t;K !#K5050,

@KdPK8 ~ t;K !1~s2d!Kd21PK~ t;K !#K→`50. ~25!

Let us study the evolution of the curvature statistics from
initial setting where the curvature is zero everywhe
Kd22PK(t50,K)}d(K). While such ad-like initial distribu-
tion is, of course, highly artificial, mathematically it is not a
anomalous case since, as we have seen@Eq. ~20!#, the mo-
ments of the curvature would grow even from such an ini
state. Two distinct asymptotic regimes can be identified
the evolution of the curvature distribution.

Small-curvature regime.For small values of curvature
K!1 ~i.e., for the dimensional curvature much smaller th
K* ;kn), Equation~23! reduces to what mathematically is
heat equation ind21 dimensions with radial symmetry

] tPK5PK9 1
d22

K
PK8 . ~26!

The solution is a heat profile spreading out from the orig

PK~ t;K !5const
e2K2/4t

t (d21)/2
. ~27!

Multiplying the solution~27! by Kd22, we find the peak of
the PDF atKpeak5A2(d22)t, i.e., it remains atK50 in 2D
and shifts towards largerK in 3D. In either case, the excita
tion eventually spreads over towards largerK;1, where the
small-curvature asymptotic regime breaks down.

Large-curvature regime.At large values of curvature
K@1, the asymptotic form of Eq.~23! is

] tPK5K2PK9 1sKPK8 1~d21!~s2d!PK . ~28!

In logarithmic variables, this is a 1D diffusion equation wi
the drift velocity s21 and with an overall growth rate
(d21)(s2d). The corresponding Green’s function is
01630
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GK~ t2t0 ;K,K0!

5
exp@~d21!~s2d!~ t2t0!#

K0A4p~ t2t0!

3expS 2
@ ln~K/K0!1~s21!~ t2t0!#2

4~ t2t0! D .

~29!

Thus, the curvature distribution develops a lognormal t
This clearly accounts for the intermittency we have detec
in the evolution of the curvature moments@Eq. ~20!#. Multi-
plying the Green’s function~29! by Kd22, it is not hard to
see that the peak of the excitation propagates accordin
Kpeak5K0exp@(2d232s)(t2t0)#. Substituting the value ofs
@formula ~24!#, we see that 2d232s,0 in both two and
three dimensions, so the peak, in fact, propagatesbackwards
towards smaller values of curvature.

The conclusion from this simple asymptotic analysis
that, after an initial transient time, the curvature PDF sho
assume the form where its bulk is concentrated at the va
of ~dimensional! curvature smaller or comparable toK*
;kn and a lognormally decaying tail is formed atK@K* .
The global maximum of the PDF is located atK50 in 2D
and at someK;K* in 3D. Thus, in most of the volume o
the system, the values of the curvature should not gre
exceedK* . The growth of the moments of the curvature
on the other hand, mostly due to the lognormal tail of t
distribution. Indeed, multiplying the solutions~27! and ~29!
by Kd2212n, we see that the relative importance of th
small-curvature region decreases, while that of the lognor
tail increases. The peak of the functionKd2212nPK(K) for
n>1 always propagates in theforward direction.

Of course, once the solution of Eq.~23! has cleared the
region of validity of the small-curvature asymptotic regim
a complicated process of probability redistribution is set
As time passes, the lognormal tail gains more weight, wh
the heat profile at smallK spreads out. The precise nature
the evolution of the PDF is decided by the interaction b
tween the small-curvature~radial heat! and large-curvature
~lognormal! regimes in the crossover regionK;K* . This
interaction can affect theentire PDF. We can gain more in
sight into what happens by observing that Eq.~23! has a
stationary solution. Indeed, let us write Eq.~23! in the fol-
lowing explicitly conservative form:

] tPK5
1

Kd22

]

]K
Kd22@~11K2!PK8 1~s2d!KPK#.

~30!

Setting the left-hand side to zero, integrating twice, and m
ing use of the boundary conditions~25! to eliminate one of
the constants of integration, we find the following stationa
limiting PDF:

Kd22PK
(st)~K !5const

Kd22

~11K2!(s2d)/2
. ~31!
5-9
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TABLE II. The coefficients of Eq.~19! and Eq.~23!.

Velocity field Dimension a b D/k2 S/k2 G/k2 s s22(d21)

Incompressible d53 21/4 0 7/4 41/4 10 41/7 13/7
d52 21/3 0 3/2 11/2 5/2 11/3 5/3

Irrotational d53 1 15 11/2 34 35 68/11 24/11
d52 1 8 11/2 43/2 21/2 43/11 21/11
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This PDF satisfies the boundary conditions~25!, is properly
normalizable, and has a power tail;K2[s22(d21)]. The val-
ues of the exponents22(d21) for the incompressible an
irrotational cases in two and three dimensions, along with
values of other relevant parameters, are collected in Tabl
The curvature distribution can be seen to converge~in the
mean-square sense! to the stationary profile~31! if we rep-
resent the time-dependent solutions of Eq.~30! in
the form PK(t;K)5C(t;K)PK

(st)(K) and notice that the
prefactor C(t;K) tends to a constant, viz.,] t^C

2&
522^(11K2)(]C/]K)2&, where the averages are with r
spect to the stationary distribution~31!.

Figure 5 shows the results of numerical solution of E
~30! in two and three dimensions for the case of incompre
ible velocity field. The results for the case of irrotation
velocity field are very similar in form~with slightly different
power laws at largeK: see Table II!. Collapse of the curva-
ture PDF onto the stationary profile~31! is very quick and
proceeds in essentially the same fashion in both incompr
ible and irrotational cases~see discussion at the end of th
section!.

An important feature of the stationary PDF~31! is that all
the momentŝ K2n& diverge. In the language of physical re
ality, this means that the limiting values of the curvatu
moments are essentially determined by the resistive regu
ization, which must cut off the power tail of the PDF~31! at
the scale where magnetic diffusivity becomes important:kh
;Pr1/2kn . This is, of course, hardly surprising because c
vature is just a measure of the inverse scale of the magn
fluctuations and cannot exceed the resistive scale. In view
these findings, the growth rates for the curvature mome
that have been obtained in this and the preceding secti
should be interpreted as describing the evolution of the m
ments while the lognormal tail of the evolving distributio
spreads and thickens. The power tail of the stationary lim
ing distribution ~31! forms the envelope inside which th
process takes place. In the diffusion-free regime, the stat
ary distribution itself is attained att→` with the moments
diverging exponentially in time. We should like to obser
here that a PDF such as we have obtained, with a power
and divergent moments, is indicative of a fractal nature
the distribution. It must be clear that the presence and
particular form of the small-scale regularization may affe
the global shape of the curvature distribution. Since we w
in the diffusion-free limit, our theoretical results only app
to the period in the evolution of the magnetic fluctuatio
before the small-scale cut off is reached. In astrophys
plasmas with very large Pr, this corresponds to an ap
ciable length of time. In fact, current estimates pertaining
the ~proto!galactic dynamo suggest that the kinematic a
01630
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proximation may well break down before the resistive sca
become important@5#.

As regards the distribution of the curvature over the v
ume of the system, the fraction of the volume where
curvature exceeds any given valueK0 is easily seen to be
V(K.K0)5*K0

` dKKd22PK(K). The existence of a station

ary distribution implies that this quantity tends to a const
that depends on the value chosen. Since the bulk of the
tribution remains at the values of the~dimensional! curvature
comparable toK* ;kn , the value of V(K.K0) for K0
@K* will be small. For example, we can use the stationa
distribution ~31! to estimate that, in the 3D incompressib
case, the fraction of the volume where the curvature is m
than ten times larger thanK* does not exceed 14%, whil
the fraction of the volume where the curvature is larger th
100K* is no more than 2%. It is, of course, quite clear th
the fraction of the volume where exponential (or any oth
kind of) growth of the curvature occurs tends to zero w
time.

Now let us compare the properties of the curvature dis
bution we have just described with the properties of the P
of the magnetic-field strength determined by Eq.~21!.
Clearly, the Green’s functionGB(t2t0 ;B,B0) for this equa-
tion is everywhere lognormal and analogous in form to
function GK(t2t0 ;K,K0). With time rescaled according to
tk2(d21)/2(d11)⇒t, we have

GB~ t2t0 ;B,B0!

5
exp@d~d11!b~ t2t0!#

B0A4p~11b!~ t2t0!

3expS 2
$ ln~B/B0!1@d1~2d11!b#~ t2t0!%2

4~11b!~ t2t0! D .

~32!

Multiplying GB(t2t0 ;B,B0) by Bd21, we find that the peak
of the excitation is atBpeak5B0exp@(d2223b)(t2t0)#. In the
incompressible case, the peak is stationary in 2D and pro
gatesforward in 3D. For all compressible flows in 2D an
those witha.22/9 in 3D, the direction of propagation i
reversed. On the other hand, the peak of the funct
Bd2112nPB(t;B) for n>1 always propagates in the forwar
direction, which accounts for the growth of the moments
B @Eq. ~22!#.

Thus, we see that the weakening of the anticorrelat
between field strength and curvature in the compress
flows ~Appendix B! is due not to any essential change in t
properties of the curvature distribution, which is quite inse
5-10
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FIG. 5. The results of a numerical solution of Eq.~23! in two and three dimensions for the case of incompressible velocity field.
numerical solution was initialized with the Gaussian heat profile~27! corresponding tot50.2. Time is measured in the units ofD21,
curvature in the units ofK* . We plot the evolving PDFKd22PK(t;K) ~normalized to 1) at timest50.2,0.5,1,2,3,4,5,6,7,8,9. The PDF th
corresponds to the earliest time is the one with the highest peak and the steepest decay at largeK. At later times, the peak of the PDF
descends, while the tail becomes thicker~log normal with increasing variance and eventually powerlike!. The log/log plots~b! and ~d!
illustrate how the power tail is formed. For the sake of reference, we have also plotted the slopes corresponding toK2[s22(d21)]

~see Table II!.
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sitive to the variation of the degree of compressibility of t
flow, but rather to the fact that the magnetic-field stren
itself now tends to only grow in a decreasing fraction of t
total volume of the system. In such a case, both the curva
and the magnetic field remain relatively weak in most of
volume. An essential difference in their statistics is that,
like the curvature, the magnetic field does not possess a
tionary limiting distribution. Indeed, due to the scal
invariant nature of the Fokker-Planck equation~21!, such a
distribution would have to be a global power law and hen
could not be normalizable.

In conclusion, we check the main results obtained in t
section against the numerical evidence supplied by the
incompressible MHD simulations of Maron and Cowley@9#.
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In Fig. 6, we present the evolution of the curvature distrib
tion observed through a sequence of times that correspon
the kinematic and diffusion-free stage of these simulatio
~at later times, the PDF is affected by the resistive regu
ization and then by the nonlinear effects!. The collapse of the
curvature PDF onto a stationary profile is manifest. The l
log plot @Fig. 6~b!# confirms the emergence of the power ta
;K213/7. These results agree very well with our theoretic
predictions presented in this section.

IV. SUMMARY AND DISCUSSION

Let us now summarize the main physical points we ha
pursued in this work and discuss the implications for t
5-11
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FIG. 6. Curvature PDF from 3D incompressible MHD simulations. This is the same simulation as was used in Fig. 4~b!: Pr52500,
kn;5, kh;250, flat initial field. We plot the PDF 4p2KPK(t;K) ~normalized to 1) at timest50.9,1.8,2.7,3.6,4.5,5.5,6.4,7.3. The curvatu
has units of inverse length, based on box size 1. The time is measured in the units of^u“3uu2&21/2 ~the smallest-eddy turnover time!. The
PDF that corresponds to the earliest time is the one with the highest peak and the steepest decay at largerK. At later times, the peak become
lower, the decay gentler.~a! is the linear plot,~b! is the log/log plot. The dashed line represents the slope corresponding toK213/7.
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nonlinear dynamo theory. In this section, we will only di
cuss the case of incompressible flows as the most releva
the astrophysical context we have in mind. The effects
compressibility have been given ample attention on b
quantitative and qualitative level in Appendixes B and C a
in Sec. III.

In the astrophysical environments that have large m
netic Prandtl numbers and, therefore, possess a wide ran
~subviscous! scales available to the magnetic, but not hyd
dynamic, fluctuations, the small-scale kinematic dynamo
driven by the velocity field that locally looks like a linea
shear. The volume deformations produced by this field l
to exponentially fast stretching and folding of the magne
field lines into a structure characterized by very rapid tra
verse variation of the field, which flips its direction at sca
ultimately bounded from below only by the resistive leng
However, the field lines remain largely unbent up to the sc
of the advecting flow.

Both numerically and analytically, we have establish
that the curvature of the magnetic-field lines and the fi
strength are anticorrelated, i.e., the growth of the field~dy-
namo! mostly occurs in the regions of flat field while th
sharply bent fields remain relatively weak. This situation
quickly restored even if the field is artificially scrambled in
a chaotically tangled state. Moreover, in the thre
dimensional incompressible flows, it is the flat growing fiel
that occupy most of the volume of the system. According
the field-line curvature remains comparable to the inve
velocity scale in most of the volume, though its distributi
is intermittent and all of its moments grow exponentially
account of the small regions of strongly bent~but weak!
fields.

In the diffusion-free approximation, i.e., in the regim
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where the magnetic excitaion has not reached the resis
scale, the growth of the curvature moments is unboun
and the curvature distribution tends to a stationary limiti
powerlike profile with divergent moments. If the resistive c
off is felt while the magnetic field is still weak enough t
satisfy the kinematic assumption, the curvature mome
saturate at the resistive scale and the precise global sha
the curvature distribution may be modified. However, t
main features of the folding structure described above~the
anticorrelation between the curvature and the field stren
the smallness of the volume where the field is bent! survive
because they result from the large-scale geometric prope
of the advection rather than from the particular form of t
small-scale regularization.

Let us remark that the reason for some of the statist
quantities considered in this paper achieving steady-state
ues even within the confines of the diffusion-free kinema
approximation (̂F2&/^B4&→const, stationary curvature
PDF! is that the second derivatives of the advecting veloc
field appear in the corresponding dynamic evolution eq
tions @see Eq.~2! and Eq.~15!#. While passive fields such a
B only feel the linear component of the ambient veloc
field and, therefore, have scale-independent nonstatio
distributions, the statistics of their gradients involve an ad
tional scale-dependent parameterk4 /k2;kn

2 . In other
words, whereas the magnetic field only knows that it is a
vected by a large-scale flow, the statistics of the magne
field gradients specifically depend on the actual scale siz
this flow and would not be fully captured in a theory whe
the velocity field were assumed to be linear. Physically,
first derivatives of the velocity cause the stretching of t
field lines ~random shear!, while the second derivatives ar
responsible for the bending.
5-12
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The theoretical results presented in this paper have b
derived for the Kazantsev-Kraichnan model velocity fie
~4!, which is Gaussian andd correlated in time. In view of
the highly artificial nature of this field, the question natura
arises as to the validity of such results in application
physical, or even to numerical, realities. Indeed, the velo
field that arises in the Kolmogorov turbulence is neith
Gaussian nord correlated in time: its intermittent character
well known and its correlation time is naturally estimated
be of the same order as its eddy-turnover time. However,
Kazantsev-Kraichnan model, while by no means a contro
approximation@39#, appears to correctly capture most of t
physics of the passive advection on at least a semiquan
tive level and has survived a number of reality tests, num
cal @7–9# and, in the case of scalar turbulence, also exp
mental ~see, e.g., the review@40# and references therein!.
Indeed, as was reported in the preceding sections, our re
are in a very good agreement with numerical simulatio
where the velocity field derives from the forced Navie
Stokes equation and has a realistic correlation time.

The primary motivation of this study of the structure
the magnetic field was its crucial importance for the und
standing of how the nonlinear effects set in. We reserve
detailed qualitative and quantitative discussion of this is
for an upcoming publication@8#. Here we restrict ourselve
to mentioning the most immediate consequence that the f
ing nature of the small-scale field in the kinematic regim
has for the onset of the nonlinearity. The Lorentz-feedb
term in the MHD momentum equation is proportional to t
Lorentz tension forceF5B•“B @24#. This quantity is qua-
dratic in the magnetic-field strength and involves theparallel
gradient of the field. The overall effect of the correlatio
that produce the folding structure is to fix the effective va
of this parallel gradient at approximately the inverse veloc
scalekn . Thus,the condition for the nonlinearity to becom
important is the growth of the magnetic energy to valu
comparable to the energy of the smallest turbulent edd
rather than to much smaller values at which the Lorentz t
sion of a chaotically tangled field would start balancing t
inertial terms in the momentum equation. Any prospects
producing magnetic fluctuations at larger scales depend
whether there exists a nonlinear mechanism for unwind
the folded structure that the nonlinear regime inherits fr
the kinematic one. For further discussion of this subject
reader is referred to Refs.@7–9#.

Finally, as was promised in Sec. I, let us discuss the r
tion of our results to the fundamental turbulence problem
material-line advection. In an ideally conducting fluid, t
behavior of the magnetic-field lines and that of the mate
lines are, of course, identical, so the diffusion-fr
kinematic-dynamo problem can be recast as a problem
stretching of the material lines by the ambient flow. T
pioneering work on this subject is due to Batchelor@10#, who
realized that, on the average, turbulent motions lead to ex
nential elongation of material line and surface elements.
results were extended and, in part, made rigorous by a n
ber of authors@11–15#. Starting with the work of Pope@16#,
much attention was focused on the statistics of the extrin
principal curvature of material surface elements in turbul
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flows @16–19# and of the curvature of material lines in bo
turbulent@18,14,15# and deterministic but chaotic@20# flows.
Our results on the statistics of magnetic-field-line curvat
are subject to direct comparison with these earlier stud
Indeed, our Eq.~15! for the vector curvatureK5b̂•“b̂ of
the magnetic field line leads to the following equation f
K5uK u:

d

dt
K52~2b̂b̂:“u2n̂n̂:“u!K1b̂b̂:~““u!•n̂, ~33!

wheren̂5K /K is the unit normal to the field line. Eq.~33! is
the same as the equation derived by Drummond and Mu¨nch
@18# for the curvature of the material line elements~in the
usual geometric definition! and is very similar~though not
identical! to Pope’s@16# equation for the extrinsic principa
curvature of the material surface elements. Formal simila
between the curvature equations for material lines and
faces led Drummond and Mu¨nch @18# to conjecture that, in
isotropic turbulence, the general features of the curvat
statistics for these objects would also be alike@41#. All of the
extant numerical evidence supports this conjecture at leas
the qualitative level@17,18,14,15,20#. The curvature statistics
also appear to be largely insensitive to the type of flo
considered. Thus, numerical simulations involving 3D forc
@17# and 2D decaying@14# Navier-Stokes turbulence, Kraich
nan’s@42# random flow model@18,15#, 2D and 3D determin-
istic but chaotic flows@20#, and, finally, our own 3D forced-
MHD simulations and theoretical results based on
Kazantsev-Kraichan velocity field~both compressible and
incompressible!, consistently reveal the same set of prop
ties of the curvature distribution. The unbounded exponen
growth of the mean-square curvature was first observed
the numerical studies of Pope and coworkers@17#, who also
found that, unlike the moments of the curvature itself, t
moments of its logarithm tended to time-independe
asymptotic values. The emergence of a stationary curva
PDF with a power tail was reported. Drummond@15# con-
firmed these results in his numerical model and also offe
a qualitative theoretical argument that related the existe
of the power tail of the curvature PDF to the competiti
between the stretching action of the first spatial derivati
of the velocity field and the bending effect of its seco
derivatives. Ishihara and Kaneda@14# attempted to determine
the power law~in 2D! by looking for a critical indexpc such
that the curvature moments of orders higher thanpc would
diverge. For a model velocity field essentially equivalent
the Kazantsev-Kraichnan flow, they deducedpc52/3, which
was consistent with their numerical results for a realistic~de-
caying! 2D turbulence. All of the above is in perfect agre
ment with the results of Sec. III~in particular, Ishihara and
Kaneda’s @14# critical index exactly corresponds to our
25/3 power tail ind52). Drummond and Mu¨nch @18# also
~numerically! measured the correlation between curvatu
and stretching and found it negative, as did we in our the
and simulations~Sec. II!. Such an anticorrelation was als
noticed by Boozer and coworkers@21#, who, in their theory
of finite-time Lyapunov exponents for chaotic flows, foun
that the local Lyapunov exponent of the flow was strong
5-13
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SCHEKOCHIHIN, COWLEY, MARON, AND MALYSHKIN PHYSICAL REVIEW E65 016305
suppressed in the regions of high curvature. Finally, res
very similar to those surveyed above were obtained
Muzzio and coworkers@20# for a number of 2D and 3D
deterministic chaotic flows. Thus, the exact theory of
curvature statistics that we have been able to develop in
framework of the Kazantsev-Kraichnan model incorpora
all of the essential features thus far observed numerically
well as surmised in less direct theoretical ways. The cl
agreement between our theory and an array of nume
results obtained for more realistic flows provides an ad
tional validation of our approach and, more importantly, su
gests that the statistics of line- and surface-element advec
possess a high degree of universality.
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APPENDIX A: DERIVATION OF THE FOKKER-PLANCK
EQUATION FOR THE JOINT PDF OF MAGNETIC

FIELD AND LORENTZ TENSION

Let us briefly describe the~standard! procedure we used
to derive the Fokker-Planck equation~6!.

In the case of incompressible advecting flow, the magn
field and the Lorentz tension satisfy

] tB
i1ukB,k

i 5u,k
i Bk, ~A1!

] tF
i1ukF ,k

i 5u,k
i Fk1u,km

i BkBm. ~A2!

We start by introducing thecharacteristic functionof the
fields B(t,x) andF(t,x) at an arbitrary fixed pointx,

Z~ t;m,l!5^Z̃~ t,x;m,l!&5^exp@ im iB
i~ t,x!1 il iF

i~ t,x!#&.
~A3!

Here and in what follows the angular brackets denote
semble averages and overtildes designate unaveraged
tities. The functionZ(t;m,l) is the Fourier transform of the
joint PDF of the vector elementsBi(t,x) and Fi(t,x).
Clearly, Z cannot have any spatial dependence due to
homogeneity of the problem.

Upon taking the time derivative of the unaveraged fun
tion Z̃(t,x;m,l) and making use of the evolution equatio
~A1! and ~A2!, we find thatZ̃ satisfies
01630
ts
y

e
he
s
as
e
al
i-
-
on

-
-
.
-
re
e-

e

n

ic

-
an-

e

-

] tZ̃1ukZ̃,k5S m i

]

]mk
1l i

]

]lk
Du,k

i Z̃2 il i

]2

]mk]mm
u,km

i Z̃.

~A4!

In order to establish an evolution equation for the~averaged!
characteristic functionZ(t;m,l), we must average the thre
mixed products ofZ̃ and the velocity field that appear in th
above equation. The average that arises from the convec
term vanishes due to the incompressibility of the veloc
field and the homogeneity of the problem:^ukZ̃,k&5

2^u,k
k Z̃&50. The remaining two averages are computed

the standard Gaussian splitting mechanism@43#

^u,k
i Z̃&52^uiZ̃,k&52E

0

t

dt8E ddx8^ui~ t,x!uj~ t8,x8!&

3
]

]xkK dZ̃~ t,x!

duj~ t8,x8!
L

52
1

2
k ,kl

i j S m j

]

]m l
1l j

]

]l l
DZ, ~A5!

^u,km
i Z̃&5^uiZ̃,km&5E

0

t

dt8E ddx8^ui~ t,x!uj~ t8,x8!&

3
]2

]xk]xmK dZ̃~ t,x!

duj~ t8,x8!
L

52 i
1

2
k ,kmln

i j l j

]2

]m l]mn
Z, ~A6!

where we abbreviatek ,kl
i j 5k ,kl

i j (y50), andk ,kmln
i j 5k ,kmln

i j (y
50). The above expressions have been obtained as follo
The functional derivative that appears under the integral
the first-order averaged response function. It satisfies
causality constraint in that it vanishes fort8.t, whence fol-
lows the upper limit of the time integrations. Since the v
locity field ui is d correlated in time, the time integration i
removed and only the equal-time value of the response fu
tion has to be calculated. That is done by formally integr
ing Eq. ~A4! from 0 to t, taking the functional derivative
d/duj (t8,x8) of both sides, averaging, settingt5t8, and tak-
ing causality into account. The result is

K dZ̃~ t,x!

duj~ t,x8!
L 5S m j

]

]m l
1l j

]

]l l
DZ

]

]xl d~x2x8!

2 il j

]2

]m l]mn
Z

]2

]xl]xn d~x2x8!. ~A7!

After integration by parts, the spatial integrations are
moved due to the presence ofd functions. Note that we make
use of the fact that odd derivatives of the velocity correlat
tensork i j (y) vanish aty50.

Upon averaging both sides of Eq.~A4! and using the ex-
pressions~A5! and~A6! for the mixed averages, we obtain
closed evolution equation for the characteristic functionZ,
5-14
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] tZ52
1

2
k ,kl

i j S m i

]

]mk
1l i

]

]lk
D S m j

]

]m l
1l j

]

]l l
DZ

2
1

2
k ,klmn

i j l il j

]4

]mk]m l]mm]mn
Z. ~A8!

Inverse Fourier transforming this equation yields the des
Fokker-Planck equation~6! for the joint one-point probabil-
ity density function of the magnetic fieldB and the Lorentz
tensionF.

The derivation of all other Fokker-Planck equations th
appear in this paper follows the same general outline.

APPENDIX B: COMPRESSIBILITY EFFECTS

Let us relax the incompressibility condition and allow t
advecting velocity field to possess an arbitrary degree
compressibility. Mathematically this means that we have
retain the terms involving divergences ofu in the equations
~1! and~2! and to allow the compressibility parametersa and
b in the small-scale expansion~5! of the velocity correlator
to vary in the intervals

2
1

d11
<a<1, 2

2

d13
<b<2, ~B1!

where the lower bounds correspond to the incompress
and the upper to the irrotational case. We will often use
alternative pair of compressibility parametersb5d@11(d
11)a# and z5d@21(d13)b# that have the advantage o
being always nonnegative and vanishing in the case of
compressible velocity field.

The exact treatment of the joint probability distribution
F andB is completely analogous to that presented in Sec
for the incompressible case. The Fokker-Planck equatio
now

] tP52
1

2
k ,kl

i j S 2d i
k1

]

]Bi Bk2d i
k ]

]Br Br1
]

]Fi Fk

22d i
k ]

]Fr Fr D S ]

]Bj Bl2d j
l ]

]Bs Bs1
]

]F j Fl

22d j
l ]

]Fs FsD P1
1

2
k ,klmn

i j S ]

]Fi BkBm2d i
k ]

]Fr BrBmD
3S ]

]F j BlBn2d j
l ]

]Fs BsBnD P. ~B2!

The quantitieŝ F2& and^B4& again satisfy equations~7! and
~8!, respectively, with coefficientsgF , SF , andg4 modified
to include the dependence on the compressibility parame
b and z. The general expressions for these coefficients
listed in Table I. Note that the source termSF remains posi-
tive for all allowed values ofb. The steady-state solution o
the form~9! continues to exist providedgF2g4,0, which is
satisfied for values of the compressibility parametera such
that
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a,ac5
d22

2~3d22!
, ~B3!

~in d52, ac50, in d53, ac51/14; this inequality can also
be derived from a generalization of the simple argumen
support of folding given in Sec. I: see Appendix C!. Thus, for
‘‘nearly incompressible’’ flows, the folding picture persists
the strong sense that the parallel scale of the field rem
approximately constant and comparable to the character
scale of the advecting flow. On the other hand, if the flo
possesses a fair degree of compressibility, the parallel sc
will start decreasing exponentially.

Let us now retrace the path taken in Sec. II and study
evolution of mean-square curvature and mirror force in
case of arbitrary degree of compressibility. Again, equatio
~11! and ~12! preserve their form with modified coefficient
gK , SK , gM , gMK , SM ~see Table I!. None of these quanti-
ties changes its sign for any allowed values of the compre
ibility parameters. The essential structure of the solutio
therefore, does not change compared to the incompres
case, and the growing mean-square curvature^K2& remains
the one interesting quantity to watch.

As we discovered from the statistics of the Lorentz te
sion, for a,ac the anticorrelation between the magnet
field strength and the field-line curvature is preserved: wh
^F2&/^B4& remains constant,̂F2/B4& grows at the rategK .
However, once the compressibility parametera exceeds the
critical valueac , the ratio^F2&/^B4& starts growing as well,
and the anticorrelation betweenB andK is weakened. Com-
paring the growth rategK of the mean-square curvature wit
the growth rategF2g4 of the ratio^F2&/^B4&, we find that
gK.gF2g4 provided

a,a* 5
3

4d27
. ~B4!

While in 2D the second critical valuea* 53 lies outside of
the interval of allowed values ofaP@21/3,1#, in 3D we
havea* 53/5,1, which is permitted. Thus, in three dimen
sions, fora.3/5, the negative correlation between the fie
strength and the field-line curvature is replaced by a posi
one, so the regions of maximal growth of the field and
curvature coincide!

To prevent any misconception from arising with regard
the quantitative character of the conditions~B3! and ~B4!,
we ought to remark here that the particular critical values
the compressibility parameter when one or other statist
correlation breaks down are, of course, largely functions
what particular statistical averages are used to measure t
correlations. Such sensitivity is due to the high degree
intermittency of the statistics of passively advected fields

Let us discuss the implications of the new facts that ha
emerged from this excursion beyond the confines of the
compressible advection theory. Clearly, the main feature
the compressible regime is that the velocity field is fre
from having to preserve the volume and, along with stret
ing vortical motions that characterized the incompressi
case, there now are motions that contract~or inflate! the vol-
umes, with magnetic-field lines trapped inside. The struct
5-15
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of the magnetic field now depends on the competition
stretching and contraction, whose relative importance
measured by the compressibility parametera. We have seen
in this section that stretching wins as long asa stays below a
certain critical valueac . Once this value is exceeded, th
parallel scale of the field cannot be prevented from decay
exponentially. While it may still be decaying slower than t
perpendicular scale, thus giving rise to ‘‘small folds,’’ bo
scales are now deep in the subviscous range and will e
tually equalize when the resistive cut-off scale is reached
tangled state will result. Asa increases, the anticorrelatio
between the strength of the field and its curvature gradu
weakens and, in 3D, is even reversed whena reaches a sec
ond critical valuea* . This gives another indication of th
increasingly tangled nature of the growing magnetic field

However, as is seen in Sec. III, the growth of the magne
field in sufficiently compressible flows only takes place in
small fraction of the total volume of the system, while els
where both the field strength and the field-line curvature
main relatively low. Thus, the tangled state is not set
everywhere throughout the system, but only in a small p
of it where there is an appreciable growing magnetic fie
This situation is, of course, due to volume contraction. T
distribution of the density of the advecting medium is lo
normal~highly intermittent! @32#. While ^r2& and all higher-
density moments grow exponentially@Eq. ~C7! of Appendix
C#, the growth of the density only occurs in a small fracti
of the volume of the system. This is very natural and co
not have been otherwise, for, as the total mass of the med
is conserved,̂ r&5const, the exponential growth of th
higher moments of the density must be compensated fo
the exponential contraction of the regions that are resp
sible for this growth.~In this context, one may also recall th
results of Chertkov et al. @44# who found that for
compressible-enough advecting velocity fields, the Liapun
exponents for the Lagrangian fluid-particle separation
come negative, so the fluid-particle trajectories tend to c
verge.! The density statistics are known to be intimately
lated to the statistics of the magnetic field~see Ref.@32# and
Appendix C!. Namely, there is a positive correlation betwe
the density of the medium and the strength of the frozen
magnetic field. This positive correlation can be deduced fr
the fact established in Ref.@32# that even moments o
B/r121/d are universal functions independent of the dens
statistics. The magnetic field will, therefore, tend to gro
wherever the density does.

Finally, let us note that, in the case of compressible MH
turbulence, the condition for the onset of nonlinearity is d
termined not just by the magnitude of the Lorentz tens
B•“B, but rather by that of the total Lorentz force divide
by the density of the fluid: (2“B2/21B•“B)/r, which in-
cludes the magnetic pressure term. The latter will grow
ponentially dueboth to the amplification of the magneti
energyand to the decrease of the~total! characteristic scale
of the magnetic field. It is not hard to see that it will quick
outgrow the tension term and the nonlinear effect associ
with magnetic pressure will dominate.
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APPENDIX C: AN ALTERNATIVE DERIVATION OF THE
CRITICAL DEGREE OF COMPRESSIBILITY

Let us demonstrate how the critical value of the co
pressibility parametera derived in Appendix B can be ob
tained by constructing a generalization of the simple ar
ment we gave in Sec. I@formula ~3!#. Upon using the
continuity equation for the densityr(t,x) of the medium,

d

dt
r52r“•u, ~C1!

we find that the magnetic fieldB(t,x) and the Lorentz ten-
sion F(t,x) satisfy

d

dt

B

r
5

B

r
•“u, ~C2!

d

dt

F

r2
5

F

r2
•“u1

B

r

B

r
:““u2

B

r

B

r
•““•u. ~C3!

We again suppose that the parallel variation ofB is initially
on scales much smaller than those of the velocity fieldu.
Then the terms in Eq.~C3! that contain second-order deriva
tives ofu are subdominant and can be neglected. We see
in such a caseB/r andF/r2 satisfy the same equation, whic
is the equation for the advection of a~contravariant! passive
vectorW,

d

dt
W5W•“u. ~C4!

The statistics of passive vectors were treated~as a particular
case of the statistics of general tensor fields! in Ref. @31#. It
was proved there that these statistics could be separated
two independentparts: one universal, the other nonunivers
the latter being expressible in terms of the statistics of
density. Specifically, the even moments ofWr1/d are univer-
sal functions independent of the statistics of the densityr.
Therefore, the even moments ofB/r121/d and of F/r221/d

should also be independent of the statistics of the den
Making use of these results, one can write

^B2n&5 K S B

r D 2n

r2nL 5constf d~n,t !^r2n(d21)/d&,

~C5!

^F2n&5 K S F

r2D 2n

r4nL 5constf d~n,t !^r2n(2d21)/d&,

~C6!

where f d(n,t)5^(Wr1/d)2n& is a universal function. Both
f d(n,t) and the moments of the density field were calcula
in Ref. @32#,

f d~n,t !5const expFd21

d
n~2n1d!~11a!k2t G , ~C7!

^r2n&5const exp@n~2n21!bk2t#, ~C8!
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where b5d@11a(d11)# ~vanishes in the incompressib
case!. With the aid of the above formulas, it is straightfo
ward to calculate

ki
25

^F2&

^B4&
}eg it, g i5@2~3d22!a2~d22!#k2 .

~C9!

We see thatg i,0 for values of the compressibility param
etera such that
D.

co
.

nt

s,

C.

ur
m
he

01630
a,ac5
d22

2~3d22!
. ~C10!

We have thus recovered the inequality~B3!.
We would like to emphasize that the above derivati

clearly demonstrates that the effects of compressibility on
field structure are due to the crucial part that the density
the medium plays in determining the statistics of the m
netic field in compressible flows.
ds
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